SAR图像目标识别的可解释性问题探讨

源自:雷达学报

作者:郭炜炜, 张增辉, 郁文贤,孙效华

“人工智能技术与咨询” 发布

摘 要

 合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。

关键词

合成孔径雷达 / 自动目标识别 / 深度学习 / 可解释性 / 可解释机器学习 

1.   引 言

合成孔径雷达(SAR)是一种可实现高分辨率的微波主动成像雷达,具备全天时、全天候、大范围观测成像的能力,使其在国民经济和国防军事等领域的应用中具有独特的优势,甚至是极端气象条件下唯一可靠的观测数据来源。SAR图像自动目标识别(Automatic Target Recognition, ATR)是实现SAR图像智能解译的关键技术之一[1],自上个世纪50年代SAR诞生以来至今持续获得大量的关注和研究[2]。特别是近年来随着深度学习技术的迅猛发展,深度神经网络也被应用于解决SAR图像目标检测和识别问题,并大幅超越了传统SAR图像目标检测识别技术[3-5]。尽管深度学习技术显著提升了SAR图像目标检测识别的性能,但主要依赖于大量标注数据的参数拟合能力,其内部过程犹如黑盒子,人们很难理解其背后的工作机理和决策逻辑,难以掌握系统决策行为的边界。如图1,笔者采用一个简单的具有5层卷积模块(Conv2d-ReLU-MaxPool2d)的卷积神经网络(Convolutional Neural Network, CNN)在MSTAR[2]测试集上的识别准确率可以达到93.80%(图1(d)),针对图1(a)输入样本能够正确判断其类别(图1(c)),但是基于Grad-CAM[6](Gradient-Class Activation Mapping)方法提取的决策显著性区域(图1(b))显示决策并不完全依赖于目标区域,还有部分背景区域对最终决策也有重要影响,其背后的决策合理性还需要结合SAR机理和特性进行分析和评估。

图片

图  1  一个简单CNN分类器在T72 SAR图像的梯度-类激活映射(Grad-CAM[6])

一方面,这样决策不透明和缺乏可解释性的SAR目标识别技术在军事目标侦察、精确打击等高风险应用中隐藏着一定的决策风险,在应用中难以取得用户的信任;另一方面,SAR图像是目标电磁散射特性的反映,难以被视觉所认知,深度神经网络从大量数据中自动挖掘的特征表示有可能蕴含一些新的知识,通过对这些特征的理解,可以启发人们反过来利用这些知识,进而提升SAR目标认知解译的能力;再次,深度神经网络工作机理复杂,且具有一定的脆弱性[7],需要通过理解深层网络模型背后的决策过程和依据,发现其中的缺陷,以便对模型和算法加以改进,提升SAR目标识别系统的鲁棒性;进一步地,SAR图像与光学图像特性存在着本质差异,其对成像参数高度敏感,很难获取完备的训练样本,因此在构建SAR图像目标识别的深层模型时需要考虑SAR图像数据的特点,结合SAR本身的物理、统计和语义等领域知识,建立可解释的SAR图像目标识别模型,从而增强SAR图像目标识别的可解释性、鲁棒性和在小样本上的泛化能力。

可解释性是人与决策模型之间的接口,旨在对模型的决策给出令人能够理解的清晰概括和指示,从而帮助人们理解模型从数据中学到了什么,针对每一个样本是如何决策的,决策是否合理和可靠等[8-10]。SAR的电磁成像机理与人类视觉系统和光学遥感的成像机理有着本质差异,导致对SAR图像的认知理解与解译应用非常困难。例如图2,SAR系统接收的是组成地物目标的每一个独立单元形成的散射能量,呈现在SAR图像上的地物目标是散射单元构成的集合体,多表现为离散的点、线组合。SAR系统独特的成像方式会造成相干斑、结构缺失、几何畸变(透视收缩、叠掩)、阴影等现象,导致SAR图像在视觉特性上与光学图像有着明显差异,表现为“所见非所知”的特点,同时SAR图像对观测参数敏感、获取样本困难,导致SAR图像目标识别仍是一个世界性难题。本文在总结当前SAR图像目标识别技术及其存在问题的基础上,结合当前机器学习、深度学习可解释性的研究进展,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨,以突破当前SAR目标识别的技术瓶颈和应用限制。最后,本文还从领域知识的引入与结合、人机协同、交互式学习等方面对SAR目标识别未来可能的研究工作进行了讨论,以期推动SAR目标识别技术的进一步发展。

图  2  MSTAR T62光学图像与不同方位角下的SAR图像

2.   SAR图像目标识别研究进展与挑战

2.1   SAR图像目标识别研究进展

SAR图像目标解译一般采用“检测->鉴别->识别”的处理流程[11]。SAR图像目标检测和鉴别的主要目的是定位目标在图像中的位置和区域,为进一步的目标识别奠定基础,杜兰教授等人在文献[4]中对目前SAR目标检测及鉴别的研究工作进行了很好的总结。SAR目标识别的目的是确定目标的类别,甚至细粒度的型号等信息。它实际上是一个模式识别问题,通常采用“特征提取+模式分类”的经典模式识别框架,其中特征提取是关键。传统SAR目标识别技术主要是基于图像处理、统计分析等方法手工设计对识别有效的特征表示[12,13]。典型的SAR图像目标识别特征包括原始图像、Garbor纹理特征、散射点分布特征、阴影形状特征等[14-16];而分类器设计方面,从早期的相关滤波到支持矢量机(Support Vector Machine, SVM)、基于稀疏表示的分类器、Adaboosting集成分类器等都有被应用于SAR图像目标识别[17-20]。SAR图像目标识别的另一类方法是基于散射中心模型匹配的方法,主要思想是将未知目标的散射中心特征与目标模型库中的散射中心模板或者电磁计算预测的特征进行匹配识别,主要涉及目标散射中心参数化建模、参数估计和匹配相似度计算[21-24],例如Potter等人[21]提出了属性散射中心模型用于SAR目标识别,计科峰教授等人[22]研究了图像域的属性散射中心参数估计方法。基于模型的方法主要困难在于:一是难于建立目标,特别是非合作目标的模型库,而SAR目标图像易受目标、传感器、环境等操作条件的影响,模型数量往往呈几何级数增长,制约了该类方法在实际中的应用。总的来说,传统SAR目标识别方法主要是基于图像的统计、物理特性进行手工建模,该框架可解释性强,识别的特征和模型具有明确的统计或物理含义,但是手工建模难以适应SAR图像的复杂多变,从而在实际应用中很难取得很高的性能。

近年来,随着计算能力的显著提升、数据规模的大幅扩大以及机器学习算法的不断改进,从数据中自动进行特征学习日益成为模式识别的主要范式。在绝大部分底层图像处理任务(例如图像去噪、超分辨等[25,26])及高层图像理解任务(图像分类、物体检测、语义分割[27-29])中,深度学习方法尤其是基于卷积神经网络(Convolutional Neural Networks, CNNs)的方法已成为目前表现最好的方法,在SAR图像目标检测和识别中也同样显示出巨大的优势[3,30-32]。例如,Zhao等人[3]提出了基于多尺度网络融合的SAR舰船目标检测方法,提升了对SAR图像中小目标的检测能力,并进一步根据SAR特性提出了一种基于脉冲余弦变换(Pulse cosine transformation)的视觉关注算法,其利用频域信息来进一步地进行舰船鉴别,去除虚警,提升了复杂场景下的SAR目标检测能力[33];陈慧元等人[34]设计了一种由目标预筛选全卷积网络(Fully Convolutional Networks for Prescreening, P-FCN)和目标精细检测全卷积网络(Detection Fully Convolutional Network for Detection, D-FCN)两个全卷积网络级联而成的目标检测框架,在保持检测精度的前提下显著提升了大场景SAR图像的目标检测效率。

对于SAR目标识别问题,国内外学者设计和改进了不同的网络结构和学习算法来提高SAR图像目标识别性能,文献[5,31,32]较好地总结了当前基于深度学习的SAR目标分类识别技术。例如,Chen等人[30]提出了所谓的AConvNets,其将全连接层去掉形成全卷积网络,降低了网络训练中的过拟合风险,在MSTAR数据集上取得了目前最好的性能;Wagner等人[35]提出了将图像强度和梯度信息多通道特征融合的方法,提升了SAR图像分类性能;并将CNN与传统SVM分类器结合,将CNN作为特征提取器提取深度特征后采用SVM作为分类器。在应用深度神经网络解决SAR目标识别问题所面临的主要困难是没有足够训练数据,目前常用的MSTAR数据包含10类目标,也仅有5631个样本,其中训练样本2813个,测试数据2818个[2]。通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值