SAR图像飞机目标智能检测识别技术研究进展与展望

源自:雷达学报

作者:罗汝, 赵凌君, 何奇山,计科峰,匡纲要

“人工智能技术与咨询”  发布

摘 要

合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。

关键词

合成孔径雷达 / 目标检测与识别 / 飞机目标 / 深度学习 / 可解释人工智能 

1.   引言

合成孔径雷达(Synthetic Aperture Radar, SAR)是一种主动式微波遥感成像雷达,通过发射相干电磁波照射地表,再接收地表目标的散射回波来获取图像[1]。SAR弥补了光学成像的不足,可提供全天时、全天候的图像采集能力。近年来,随着SAR技术的快速发展,多平台(星载、机载和弹载)、多极化、多波段的SAR数据越来越丰富,空间分辨率可达亚米级[2,3],逐渐满足目标/地物精细化解译的需求,在目标侦察与监视、打击指示以及自然灾害响应等多个领域发挥着重要作用[4]。

自动目标识别(Automatic Target Recognition, ATR)是指从图像中检测和识别目标特征和型号[5]。其中,飞机是SAR图像解译关注的典型目标,及时准确揭示飞机目标数量、类型和分布情况,可为战场情报侦察、机场管理以及飞机的调度等提供重要信息,在军事和民用领域具有重要的应用价值[6]。

在深度学习技术被引入SAR ATR领域之前,研究者常采用林肯实验室提出的检测—鉴别—分类三级处理流程[7–9],如图1所示。这类传统方法结合了目标和场景的先验知识,具有良好的可解释性。然而,它们依赖人工设计特征和复杂的参数调优,特征表征能力弱,难以建立可靠的预测模型,算法鲁棒性和场景泛化能力差。

图片

图  1  典型SAR ATR系统示意图

近年来,随着SAR成像质量的提升和信息的丰富,解译任务开始朝着更细粒度的方向发展,对智能化处理的需求更为迫切。深度学习不需要手动设计特征,而是自动处理复杂图像数据库,学习数据隐含的内部联系,具有较强的特征描述能力[10]。与传统方法相比,深度学习技术的引入显著提升了SAR ATR的性能。然而,对于飞机目标,其结构复杂,成像后的特征离散不连通,边缘轮廓不显著,细节不完整,容易漏检;飞机周围的廊桥等人造建筑物往往又形成强背景干扰。因此,SAR图像飞机目标检测识别仍存在特定的困难与挑战。近年来国内外学者也提出了一些针对性的方法,本文对这些方法进行了归纳总结,分析了各类方法的特点和存在的问题,最后对其后续研究进行了展望。

复旦大学郭倩等人[6]从是否采用目标散射特征的角度,总结了基于传统方法和深度学习方法的SAR图像飞机目标检测与识别研究进展。随着基于深度学习的通用目标检测识别算法的日益成熟,SAR图像飞机目标检测与识别数据集的相继发布,以及“天智杯”人工智能挑战赛[11]、“中科星图杯”国际高分遥感图像解译大赛[12]等遥感领域重大赛事的举办,SAR图像飞机目标检测与识别技术得到快速发展。为了使广大科研人员能够全面、清晰地了解SAR图像飞机目标检测与识别技术的研究现状,本文结合团队多年来在SAR图像目标检测与识别领域的研究积累以及所形成的理论体系,首先从SAR影像特征和电磁散射特性的角度,阐述了SAR图像飞机目标特性及其检测识别难点;随后,从检测和识别难点出发,对基于深度学习的SAR图像飞机目标检测与识别领域研究现状进行了深入调研与回顾,总结了不同方法的特点及应用场景;最后,探讨了该领域面临的挑战和未来的发展方向,并汇总了相关公开数据集和评估指标,以期为研究人员开发SAR专用网络、突破算法性能瓶颈提供一些参考和启示。

2.   飞机目标特性与检测识别难点

SAR图像目标特性反映了雷达成像机理、成像条件及目标自身固有特性,亦是研究者开展SAR解译任务的重要依据[13]。本节从SAR影像特征和电磁散射特性两方面分析了SAR图像飞机目标特性,并详细阐述了飞机目标检测识别的难点所在。

2.1   SAR图像飞机目标特性

SAR成像本质是目标散射特性空间到目标影像空间的映射[14]。图像特征的描述与建模有助于从背景中区分目标,并发现和挖掘目标的本质特征。描述图像的特征需要具备可靠性、区分性、独立性、低维等特点,以保证模型的准确性。

2.1.1   SAR影像特征

(1) 几何特征

几何特征包括结构特征、几何形状等。其中,结构特征反映了被描述目标的空间组织关系,是一种稳定的图像级核心内在特征,如在多源数据的利用方面,图像的灰度和纹理存在差异,而目标的空间结构特征往往被视为共性特征。飞机目标几何特征主要表现在结构的镜像对称性、部件配置和几何参数信息(机身长度、翼展宽度、发动机数量)等方面,可以作为先验信息,用于进行知识辅助识别。然而,对于轮廓复杂、特征离散的飞机目标,难以利用椭圆和矩形(常用于船只和车辆目标检测识别任务)等简单拟合模型,来准确表征飞机目标的几何特征。为此,国防科技大学陈玉洁等人[15]提出了一种基于可变参数化几何模型的SAR图像飞机目标特征提取方法,可实现飞机目标常见几何参数的估计,方位角平均误差仅为1.46°,机身长度和宽度的平均误差分别为2.97 m和4.85 m。中国科学院空天信息创新研究院高君等人[16]通过提取飞机零部件(如发动机和机头)和骨架结构等先验知识,获取飞机目标关键几何特征,可用于高分辨率SAR图像飞机目标识别与解译。窦方正等人[17]提出在高分辨率SAR图像中利用深度形状先验重建飞机目标,在包含两类飞机目标的真实数据上,重建精度为85.17%。图2展示了添加形状先验前后飞机目标的重建结果比对。

图片

图  2  添加形状先验前后飞机目标重建结果比对[17]

(2) 灰度统计特征

SAR图像的灰度与地物的后向散射特性密切相关,其差异与目标的结构和表面材质等有关。飞机目标与背景的结构和材质上存在较大差异,在SAR图像上表现为不同的灰度值。传统的SAR目标检测算法正是基于目标的电磁后向散射特性和杂波背景的这种差异,代表性的恒虚警率(Constant False Alarm Rate, CFAR)方法对局部背景杂波的统计分布进行建模,再设置适当的虚警率检测目标[18]。然而,基于单一统计分布的CFAR算法,无法有效处理复杂场景下的飞机目标检测。武汉大学He等人[19]提出混合统计分布比单一统计分布更能有效地从背景中区分目标,设计了一种基于混合统计分布的多分量(Mixture Statistical Distribution based Multiple Component, MSDMC)模型。该模型使用根滤波器和部件滤波器组成的多分量模型来描述目标及其子部件之间的结构信息,并采用混合统计分布区分目标与背景。在戴维斯-蒙森(Davis-Monthan)空军基地TerraSAR-X图像上的飞机目标检测实验表明,MSDMC算法性能优于CFAR算法,但耗时较长。同时,与韦布尔分布、瑞利分布和对数正态分布相比,伽马分布更适合于高空间分辨率SAR图像中飞机目标的建模,它可以检测到飞机目标的大部分显著点,并有效抑制背景杂波。图3给出了基于伽马分布的CFAR飞机目标检测结果。

图片

图  3  基于伽马分布的CFAR飞机目标检测结果[19]

(3) 纹理特征

纹理特征在SAR图像目标解译中是一种有效的鉴别特征。通常,对于高分辨率SAR图像,飞机目标是由孤立的强散射点组成的区域目标,具有较为丰富的显著性信息。由于特殊的成像机制以及目标材质、结构和后向散射特性的差异,飞机和机场内的建筑物、车辆等硬目标之间的差异往往体现在纹理特征上。图4展示了基于梯度纹理显著性的SAR图像飞机目标检测结果,可以提取出较为完整的飞机目标[20]。Dou等人[21]提出使用CFAR分割技术和局部梯度显著性来定位目标,获取候选切片,再利用Kullback-Leibler(KL)散度衡量候选切片与模板切片之间的特征相似性进行飞机目标识别,识别准确率达到了80.8%。

图片

图  4  基于梯度纹理显著性的SAR图像飞机目标检测结果[20]

在某些成像条件下,当廊桥等人造目标的雷达波后向散射强度高于飞机目标时,削弱了飞机目标的散射强度和视觉显著性,造成飞机目标的纹理和结构不突出。此时,仅使用单一纹理特征进行预测的算法效果较差,多特征联合预测通常更有助于保证算法性能[6]。

2.1.2   电磁散射特性

散射特性包含了散射中心的相对位置、数量等信息,反映了目标的物理结构[13]。不同类型的飞机目标虽然有外形差异,但都是由机翼、尾翼、中央机身、机头和引擎等重要子部件组成的,也是SAR成像后飞机目标的主要强散射响应区域,如图5所示。在高频区,飞机目标散射特征是由一些孤立的散射中心组成的。每个散射中心对应于特定的电磁散射机理。文献[6,13]对飞机目标各子部件的主要散射机理进行了详细分析。

图片

图  5  飞机目标部件结构

散射中心的相对位置由雷达回波中的局部峰值确定,与目标的物理几何、观测姿态角有关,与平移无关。虽然目标的散射特性会随着传感器参数(分辨率、极化模式、电磁波波长等)以及目标姿态等参数的变化而改变,具有姿态敏感性,但这种姿态敏感性具有一定的变化规律[13]。根据电磁散射理论和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值