图论 | 期末复习笔记 | (一)

第一章:基本概念

预备知识

无序积、笛卡尔积、多重集合
  • 无序积 ( a , b ) ∣ a ∈ A   a n d   b ∈ B {(a,b)|a\in A \,and\, b\in B} (a,b)aAandbB,记作 A & B A\&B A&B A & B = B & A A\&B=B\&A A&B=B&A
  • 笛卡尔积 < a , b > ∣ a ∈ A , b ∈ B {<a,b>|a\in A,b\in B} <a,b>aA,bB,记作 A × B A\times B A×B)(只有 A = B A=B A=B时有 A × B = B × A A\times B=B\times A A×B=B×A​)
  • 多重集合:元素可以重复出现的集合(重复次数称为重复度)
无向图、有向图以及xx图
无向图
  • 无向图:一个有序的二元组 < V , E > <V,E> <V,E>,记作 G G G V ≠ ∅ V≠\varnothing V= 顶点集,E为边集,是无序积 V & V V\&V V&V 的多重子集
有向图
  • 有向图:一个有序的二元组 < V , E > <V,E> <V,E>,记作 D D D V ≠ ∅ V≠\varnothing V= 顶点集,E为边集,是笛卡尔序积 V × V V\times V V×V​ 的多重子集

∣ V ( G ) ∣ = n |V(G)|=n V(G)=n,则称 G G G为n阶图。如果 ∣ V ( G ) ∣ = n , ∣ E ( G ) ∣ = m |V(G)|=n,|E(G)|=m V(G)=n,E(G)=m G G G也表示为 ( n , m ) (n,m) (n,m)

  • 有限图 ∣ V ( G ) ∣ ∣ E ( G ) ∣ |V(G)|\quad|E(G)| V(G)E(G) 均为有限数的图
  • 零图 E ( G ) = ∅ E(G)=\varnothing E(G)= 此时若 G G G n n n阶图,则称 G G G n n n阶零图,记作 N n N_{n} Nn
  • 平凡图 N 1 N_{1} N1
  • 空图:顶点集为空的图( ∅ \varnothing
  • 标定图与非标定图:顶点或边(没)用字母标定的图(常用 e k e_{k} ek表示无向边 ( V i , v j ) (V_{i},v_{j}) (Vi,vj)有向边 < v i , v j > <v_{i},v_{j}> <vi,vj>
  • 基图:将有向图各有向边改成无向边后的无向图(为原图的…)
  • 简单图:既不含平行边也不含环的图
  • 多重图:含平行边的图

平行边:无向图中,关联一对顶点的无向边如果多于1条,就称这些边为平行边;有向图中,关联一对顶点的无向边如果多于1条,且这些边的始点和终点相同

  • 正则图:若对 ∀ v ∈ V \forall v\in V vV, d ( v ) = k d(v)=k d(v)=k ,则称 G G G​为k-正则图
  • 无向完全图:设 G G G n n n阶无向简单图,若 G G G中的每个顶点均与其余的 n − 1 n-1 n1个顶点相邻,则称 G G G n n n无向完全图,简称 n n n阶完全图。在同构意义下, n n n个顶点的完全图只有一个,记作 K n ( n ⩾ 1 ) K_n(n\geqslant1) Kn(n1)
  • 有向完全图:设 D D D n n n阶有向简单图,若 D D D中的每个顶点都邻接到其余的 n − 1 n-1 n1个顶点,又邻接于其余的 n − 1 n-1 n1个顶点,则称 D D D n n n有向完全图
  • n阶竞赛图:设 D D D n n n阶有向简单图,若 D D D的基图为 n n n阶无向完全图 K n K_n Kn,则称 D D D n n n​阶竞赛图

结论:

  • n阶无向完全图的边数为: n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)
  • n阶有向完全图的边数为: n ( n − 1 ) n(n-1) n(n1)
  • n阶竞赛图的边数为: n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)
  • 补图:设 G = < V , E > G=<V,E> G=<V,E> n n n阶无向简单图, E 1 = { u v ∣ u ≠ v , u , v ∈ V } E_1=\{uv|u\neq v,u,v\in V\} E1={uvu=v,u,vV},称 H = ( V , E 1 \ E ) H=(V,E_1\backslash E) H=(V,E1\E)称为 G G G补图,记作 G ˉ \bar{G} Gˉ或者 G c G^c Gc。若图 G ≅ G ˉ G\cong\bar{G} GGˉ,则称 G G G​为自补图。(补图就像是给原图的边关系做了一个"反转",原来相连的现在不连,原来不连的现在相连。
    • 定理:若 n n n阶图 G G G是自补图则有 n = 0 , 1 m o d    4 n=0,1\mod4 n=0,1mod4​。(证明通过G与其补图边数之和等于n阶完全图的边数)
  • 二部图(两分图、偶图):设 G = < V , E > G=<V,E> G=<V,E>为一个无向图,若能将 V V V分成 V 1 V_1 V1 V 2 V_2 V2两部分,其中 V 1 ∪ V 2 = V , V 1 ∩ V 2 = ∅ V_1\cup V_2=V,V_1\cap V_2=\varnothing V1V2=V,V1V2=,使得 G G G中的每条边的两个端点都是一个属于 V 1 V_1 V1,另一个属于 V 2 V_2 V2,则称 G G G二部图(二分图、偶图),称 V 1 V_1 V1 V 2 V_2 V2为互补顶点子集。常将二部图 G G G记为 < V 1 , V 2 , E > <V_1,V_2,E> <V1,V2,E>
  • 完全二部图:若 G G G是简单二部图, V 1 V_1 V1中每个顶点均与 V 2 V_2 V2中的所有顶点相邻,则称 G G G完全二部图,记为 K r , s K_{r,s} Kr,s,其中 r = ∣ V 1 ∣ , s = ∣ V 2 ∣ r=|V_1|,s=|V_2| r=V1,s=V2​​​。

注意:

  • n n n阶零图为二部图。

  • K 1 , n K_{1,n} K1,n也叫做 K 1 , 3 K_{1,3} K1,3也叫做爪图

  • 多部图:设 G = < V , E > G=<V,E> G=<V,E>为一个无向图,若能将 V V V分成 V 1 , V 2 , … , V k V_1,V_2,\ldots,V_k V1,V2,,Vk k k k部分,其中 V 1 ∪ V 2 ∪ ⋯ ∪ V k = V , V i ∩ V j = ∅ , ∀ i , j V_1\cup V_2\cup\cdots\cup V_k=V,V_i\cap V_j=\varnothing,\forall i,j V1V2Vk=V,ViVj=,i,j,使得 G G G中的每条边的两个端点都是一个属于 V i V_i Vi,另一个属于 V j V_j Vj,则称 G G G为** k k k部图**。常将 k k k部图 G G G记为 < V 1 , V 2 , … , V k , E > <V_1,V_2,\ldots,V_k,E> <V1,V2,,Vk,E>

  • 完全多部图:若 G G G是简单 k k k部图, V i V_i Vi中每个顶点均与 V j V_j Vj中的所有顶点相邻,则称 G G G完全 k k k部图,记为 K r 1 , r 2 , … , r k K_{r_1,r_2,\ldots,r_k} Kr1,r2,,rk,其中 r i = ∣ V i ∣ r_i=|V_i| ri=Vi​。

  • 边图(线图):设 G G G是一个无环图,边图 L ( G ) L(G) L(G)这样构成。将 E ( G ) E(G) E(G)中的每条边作为 L ( G ) L(G) L(G)的顶点集,即 V ( L ( G ) ) = E ( G ) V(L(G))=E(G) V(L(G))=E(G) L ( G ) L(G) L(G)中的两项相邻当且仅当它们是 G G G​中的两条相邻的边。

    • 线图顶点的度数: d L ( G ) ( u v ) = d G ( u ) + d G ( v ) − 2 d_{L(G)}(uv)=d_G(u)+d_G(v)-2 dL(G)(uv)=dG(u)+dG(v)2(uv对应的顶点数为除uv这条边以外的与u,v相邻的边的条数之和)

    • 线图的边数: ∣ E ( L ( G ) ) ∣ = ∑ v ∈ G C d G ( v ) 2 |E(L(G))|=\sum\limits_{v\in G}C_{d_G(v)}^2 E(L(G))=vGCdG(v)2(定义证明与握手定理证明)​

    • 线图总是无爪图,即线图的所有导出子图均不是 K 1 , 3 K_{1,3} K1,3

    • G ≅ L ( G ) G\cong L(G) GL(G)当且仅当 G G G是一个圈。

    • G ≅ H G\cong H GH,则 L ( G ) ≅ L ( H ) L(G)\cong L(H) L(G)L(H)。在他们都不是三角形 K 3 K_3 K3或爪形 K 1 , 3 K_{1,3} K1,3时,若 L ( G ) ≅ L ( H ) L(G)\cong L(H) L(G)L(H),则 G ≅ H G\cong H GH

    • 多次应用线图: L n ( G ) = L ( L n − 1 ( G ) ) L^n(G)=L(L^{n-1}(G)) Ln(G)=L(Ln1(G))​。

  • 子图:设 G = < V , E > , G ′ = < V ′ , E ′ > G=<V,E>,G'=<V',E'> G=<V,E>,G=<V,E>为两个图(同为无向图或同为有向图),若 V ′ ⊆ V V'\subseteq V VV E ′ ⊆ E E'\subseteq E EE,则称 G ′ G' G G G G子图 G G G G ′ G' G母图,记作 G ′ ⊆ G G'\subseteq G GG

    • 真子图:若 V ′ ⊂ V V'\subset V VV E ′ ⊂ E E'\subset E EE,则称 G ′ G' G G G G真子图
    • V ′ = V V'=V V=V,则称 G ′ G' G G G G​的生成子图(支撑子图)

    定义中一定要保证 G ′ G' G​是图这个前提

  • 导出子图

    • G = < V , E > G=<V,E> G=<V,E>为一图, V 1 ⊂ V V_1\subset V V1V V 1 ≠ ∅ V_1\neq\varnothing V1=,称以 V 1 V_1 V1为顶点集,以 G G G中两个端点都在 V 1 V_1 V1中的边组成边集 E 1 E_1 E1的图为 G G G V 1 V_1 V1导出的子图,记作 G [ V 1 ] G[V_1] G[V1]
    • G = < V , E > G=<V,E> G=<V,E>为一图, E 1 ⊂ E E_1\subset E E1E E 1 ≠ ∅ E_1\neq\varnothing E1=,称以 E 1 E_1 E1为边集,以 E 1 E_1 E1中边关联的顶点为顶点集 V 1 V_1 V1的图为 G G G E 1 E_1 E1导出的子图,记作 G [ E 1 ] G[E_1] G[E1]
关联与关联次数、环、孤立点
  • 关联:边 e k e_{k} ek与其两个端点 V i , V j V_{i},V_{j} Vi,Vj彼此关联
  • 关联次数: v i = v j → v_{i}=v_{j}\rightarrow vi=vj 关联次数为2, e k e_{k} ek为环; v i ≠ v j → v_{i}≠v_{j}\rightarrow vi=vj关联次数为1; ∀ v l ∈ V , i f   v l ∉ { v i , v j } \forall v_{l}\in V,if\,v_{l}\notin \{v_{i},v_{j}\} vlV,ifvl/{vi,vj},关联次数为0
  • 孤立点:无边关联的点(无向图、有向图定义均一致)
相邻与邻接
  • 相邻:在无向图中, ∃ e t ∈ E , s . t .   e t = ( v i , v j ) \exists e_{t}\in E,s.t.\,e_{t}=(v_{i},v_{j}) etE,s.t.et=(vi,vj), 则 v i v_{i} vi v j v_{j} vj相邻;若 ∃ v u ∈ V ( G ) , v u = e k ∩ e l \exists v_{u}\in V(G),v_{u}=e_{k}\cap e_{l} vuV(G),vu=ekel,则称两边相邻
  • 邻接:在有向图中, ∃ e t ∈ E , s . t .   e t = < v i , v j > \exists e_{t}\in E,s.t.\,e_{t}=<v_{i},v_{j}> etE,s.t.et=<vi,vj>,则称 v i v_{i} vi e t e_{t} et的始点, v j v_{j} vj e t e_{t} et的终点,并称 v i v_{i} vi邻接到 v j v_{j} vj v j v_{j} vj邻接于 v i v_{i} vi; 若 e k e_{k} ek终点 e l e_{l} el始点,则称 e k e_{k} ek e l e_{l} el​相邻
邻域
  • 设无向图 G = < V , E > G=<V,E> G=<V,E> ∀ v ∈ V \forall v \in V vV,称 { u ∣ u ∈ V ∧ ( u , v ) ∈ E ∧ u ≠ v } \{u|u \in V \wedge (u,v) \in E \wedge u \neq v\} {uuV(u,v)Eu=v} v v v邻域,记作 N G ( v ) N_G(v) NG(v)。称 N G ( v ) ∪ { v } N_G(v) \cup \{v\} NG(v){v} v v v闭邻域,记作 N ˉ G ( v ) \bar{N}_G(v) NˉG(v)。称 { e ∣ e ∈ E ∧ e 与 v 相关联 } \{e|e \in E \wedge e与v相关联\} {eeEev相关联} v v v关联集,记作 I G ( v ) I_G(v) IG(v)

  • 设有向图 D = < V , E > D=<V,E> D=<V,E> ∀ v ∈ V \forall v \in V vV,称 { u ∣ u ∈ V ∧ < v , u > ∈ E ∧ u ≠ v } \{u|u \in V \wedge <v,u> \in E \wedge u \neq v\} {uuV<v,u>∈Eu=v} v v v后继元集,记作 Γ D + ( v ) \Gamma^+_D(v) ΓD+(v)。称 { u ∣ u ∈ V ∧ < u , v > ∈ E ∧ u ≠ v } \{u|u \in V \wedge <u,v> \in E \wedge u \neq v\} {uuV<u,v>∈Eu=v} v v v先驱元集,记作 Γ D − ( v ) \Gamma^-_D(v) ΓD(v)。称 Γ D + ( v ) \Gamma^+_D(v) ΓD+(v) v v v出邻域 Γ D − ( v ) \Gamma^-_D(v) ΓD(v) v v v入邻域 Γ D + ( v ) ∪ Γ D − ( v ) \Gamma^+_D(v)\cup\Gamma^-_D(v) ΓD+(v)ΓD(v) v v v邻域,记作 N D ( v ) N_D(v) ND(v)。称 N D ( v ) ∪ { v } N_D(v) \cup \{v\} ND(v){v} v v v闭邻域,记作 N ˉ D ( v ) \bar{N}_D(v) NˉD(v)

  • 子集的邻域: V V V的子集 S S S的邻域: N ( S ) = ⋃ v ∈ S N ( v ) ∀ S ⊆ V N(S)=\bigcup\limits_{v \in S}N(v) \quad \forall S \subseteq V N(S)=vSN(v)SV

注意区分概念:相邻、邻接、关联、邻域

顶点的度
  • 定义: d G ( v ) d_{G}(v) dG(v)表示与顶点 v v v​相关联的边的次数(环计算两次)

d ( v ) ≠ ∣ N ( v ) ∣ d(v)\neq|N(v)| d(v)=N(v) v v v上有环或者与 v v v​关联的边有重边时不对

  • 有向图: d D + ( v ) d^{+}_{D}(v) dD+(v)为出度(边的始点次数), d D − ( v ) d_{D}^{-}(v) dD(v)为入度(边的终点次数), d ( v ) = d + ( v ) + d − ( v ) d(v)=d^{+}(v)+d^{-}(v) d(v)=d+(v)+d(v)

某个点上的有向环要对这个点计算一次入度计算一次出度

  • 最大度: Δ ( G ) = max ⁡ { d ( v ) ∣ v ∈ V ( G ) } \Delta(G)=\max\{d(v)|v\in V(G)\} Δ(G)=max{d(v)vV(G)}, 最大出(入)度: Δ + ( − ) ( D ) = max ⁡ { d + ( − ) ( v ) ∣ v ∈ V ( D ) } \Delta^{+(-)}(D)=\max\{d^{+(-)}(v)|v\in V(D)\} Δ+()(D)=max{d+()(v)vV(D)}
  • 最小度: δ ( G ) = min ⁡ { d ( v ) ∣ v ∈ V ( G ) } \delta(G)=\min\{d(v)|v\in V(G)\} δ(G)=min{d(v)vV(G)}, 最小出(入)度: δ + ( − ) ( D ) = min ⁡ { d + ( − ) ( v ) ∣ v ∈ V ( D ) } \delta^{+(-)}(D)=\min\{d^{+(-)}(v)|v\in V(D)\} δ+()(D)=min{d+()(v)vV(D)}
  • 悬挂顶点与悬挂边:度数为1的顶点,与悬挂顶点关联的边
  • 偶度(奇度)顶点:度为偶数(奇数)
握手定理
  • 定义1:设 G = < V , E > G=<V,E> G=<V,E> 为任意无向图, V = { v 1 , v 2 , … , v n } V=\{v_{1},v_{2},\dots,v_{n}\} V={v1,v2,,vn}, ∣ E ∣ = m |E|=m E=m 则有

∑ i = 1 n d ( v i ) = 2 m \sum_{i=1}^{n}d(v_{i})=2m i=1nd(vi)=2m

  • 定义2:设 D = < V , E > D=<V,E> D=<V,E>为任意有向图, V = { v 1 , v 2 , … , v n } V=\{v_{1},v_{2},\dots,v_{n}\} V={v1,v2,,vn}, ∣ E ∣ = m |E|=m E=m​ 则有

∑ i = 1 n d ( v i ) = 2 m a n d ∑ i = 1 n d + ( v i ) = ∑ i = 1 n d − ( v i ) = m \sum_{i=1}^{n}d(v_{i})=2m\quad and \quad \sum^{n}_{i=1}d^{+}(v_{i})=\sum^{n}_{i=1}d^{-}(v_{i})=m i=1nd(vi)=2mandi=1nd+(vi)=i=1nd(vi)=m

  • 证明:分为简单图和非简单图来证明(非简单图转化到简单图的证法)

  • 推论1:任意图中,奇度顶点的个数为偶数

    • 证明:
      G = < V , E > G=<V,E> G=<V,E>为任意一图,令
      V 1 = { v ∣ v ∈ V ∧ d ( v ) 为奇数 } V_1 = \{v | v \in V \land d(v) \text{为奇数}\} V1={vvVd(v)为奇数}

      V 2 = { v ∣ v ∈ V ∧ d ( v ) 为偶数 } V_2 = \{v | v \in V \land d(v) \text{为偶数}\} V2={vvVd(v)为偶数}

      V 1 ∪ V 2 = V V_1 \cup V_2 = V V1V2=V V 1 ∩ V 2 = ∅ V_1 \cap V_2 = \varnothing V1V2=,由握手定理可知
      2 m = ∑ v ∈ V d ( v ) = ∑ v ∈ V 1 d ( v ) + ∑ v ∈ V 2 d ( v ) 2m = \sum_{v \in V} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) 2m=vVd(v)=vV1d(v)+vV2d(v)

      由于 2 m 2m 2m ∑ v ∈ V d ( v ) \sum\limits_{v \in V}d(v) vVd(v),所以 d ( v ) d(v) d(v)​为偶数,
      ∑ v ∈ V d ( v ) 为偶数 \sum_{v \in V} d(v) \text{为偶数} vVd(v)为偶数

      但因 V 1 V_1 V1 中顶点度数为奇数,所以 ∣ V 1 ∣ |V_1| V1 必为偶数。

  • 推论2:正则图的阶数和度数不能同时为奇数

    • 证明:设 G G G是k-正则图,且顶点数为 n n n,边数为 m m m,由握手定理知: 2 m = k n 2m=kn 2m=kn 由于 2 m 2m 2m是偶数,则 k , n k,n k,n中至少有一个为偶数。 Q . E . D . Q.E.D. Q.E.D.
  • 推论3: δ ≤ 2 m n ≤ Δ \delta \leq \frac{2m}{n}\leq \Delta δn2mΔ 其中 δ \delta δ为最小度, Δ \Delta Δ​最大度(握手定理证明)

度序列
  • 定义: d ( v i ) , i ∈ [ 1 , n ] d(v_{i}),i\in [1,n] d(vi),i[1,n] (是图的“拓扑不变量”—对于与图G同构的所有图来说不会发生改变)
  • 有向图的出度列和入度列
  • 性质:一个简单图G的n个点的度不能互不相同(证明分孤立点个数、鸽笼原理)
图的同构
  • 定义:设 G 1 = < V 1 , E 1 > , G 2 = < V 2 , E 2 > G_1=<V_1,E_1>,G_2=<V_2,E_2> G1=<V1,E1>,G2=<V2,E2>为两个无向图,若存在双射函数 f : V 1 → V 2 f:V_1\to V_2 f:V1V2,使得对于任意的 v i , v j ∈ V 1 , ( v i , v j ) ∈ E 1 v_i,v_j\in V_1,(v_i,v_j)\in E_1 vi,vjV1,(vi,vj)E1当且仅当 ( f ( v i ) , f ( v j ) ) ∈ E 2 (f(v_i),f(v_j))\in E_2 (f(vi),f(vj))E2,并且 ( v i , v j ) (v_i,v_j) (vi,vj) ( f ( v i ) , f ( v j ) ) (f(v_i),f(v_j)) (f(vi),f(vj))的重数相同,则称 G 1 G_1 G1 G 2 G_2 G2同构的,记作 G 1 ≅ G 2 G_1\cong G_2 G1G2​。图的同构关系是等价关系

  • 简单的来说,图的同构就像是两张纸画的两个图形,如果可以通过折叠、拉伸但不撕裂或重叠,使得它们的形状完全一致,那么这两个图形就是同构的。

  • 必要条件:

    • 顶点数相同
    • 边数相同
    • 关联边数相同的顶点数相同
  • 单星妖怪(Petersen图,常用作反例)

在这里插入图片描述

图序列

图序列
  • 任何一个图都有一个非负整数列为其度序列。
  • 可图化:对于给定的非负整数列 d = { d 1 , d 2 , … , d n } d=\{d_1,d_2,\ldots,d_n\} d={d1,d2,,dn},若存在以 V = { v 1 , v 2 , … , v n } V=\{v_1,v_2,\ldots,v_n\} V={v1,v2,,vn}为顶点集的 n n n阶无向图 G G G,使得 d ( v i ) = d i d(v_i)=d_i d(vi)=di,则称 d d d是可图化的(或者称 d d d为图序列)
  • 判定定理:非负整数列 d = ( d 1 , d 2 , … , d n ) d=(d_1,d_2,\ldots,d_n) d=(d1,d2,,dn)是一个图的度序列当且仅当 ∑ j = 1 n d j ≡ 0 ( m o d    2 ) \sum_{j=1}^{n}d_j\equiv0(\mod2) j=1ndj0(mod2)​。
度序列的简单图化
  • 定义:一个非负整数组 d d d如果是某个简单图的度序列,我们称它为简单图序列或者称可简单图化
简单图序列的条件
充要条件
  • 定理:若 d 1 , d 2 , … , d n d_1,d_2,\ldots,d_n d1,d2,,dn是简单图的次序列,且 d 1 ≥ d 2 ≥ … ≥ d n d_1\geq d_2\geq\ldots\geq d_n d1d2dn,则 ∑ i = 1 n d i \sum_{i=1}^{n}d_i i=1ndi是偶数,且对 1 ≤ k ≤ n 1\leq k\leq n 1kn​。
    ∑ i = 1 k d i ⩽ k ( k − 1 ) + ∑ i = k + 1 n min ⁡ { k , d i } \sum_{i=1}^{k}d_i\leqslant k(k-1)+\sum_{i=k+1}^{n}\min\{k,d_i\} i=1kdik(k1)+i=k+1nmin{k,di}
必要条件
  • 定理:设 G G G为任意 n n n阶无向简单图,则 Δ ( G ) ⩽ n − 1 \Delta(G)\leqslant n-1 Δ(G)n1
  • 作用:快速判断某些非负整数列不是简单图的度序列
结论总结
  • 总结:虽然有判断一个非负整数列是否可简单图化的充要条件,但即使判断能简单图化,也没有有效的算法计数及构造,但对小规模的数组, 我们可以采用「枚举+性质」等方式来构造出所有的简单图。构造过程中可以通过拿掉最小度数点最大度数点简化情况。
  • 思路:先判断是否为图序列 ∑ j = 1 n d j ≡ 0 ( m o d    2 ) \sum_{j=1}^{n}d_j\equiv0(\mod2) j=1ndj0(mod2)​ ,再判断简单图序列的必要条件
简单图化的算法
  • 定理:设 π = ( d 1 , d 2 , … , d n ) \pi=(d_1,d_2,\ldots,d_n) π=(d1,d2,,dn)是非负整数的非增序列, π 1 \pi_1 π1是序列 d 2 − 1 , d 3 − 1 , … , d d 1 + 1 − 1 , d d 1 + 2 , … , d n d_2-1,d_3-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n d21,d31,,dd1+11,dd1+2,,dn,则 π \pi π是简单图次序列的充要条件是 π 1 \pi_1 π1​是简单图次序列。(迭代使用)

图运算

图的删边删点运算
删边运算
  • G = < V , E > G=<V,E> G=<V,E>为无向图,设 e ∈ E e\in E eE,用 G − e G-e Ge表示从 G G G中去掉边 e e e,称为删除 e e e。设 E ′ ⊂ E E'\subset E EE,用 G − E ′ G-E' GE表示从 G G G中删除 E ′ E' E中所有的边,称为删除 E ′ E' E
删点运算
  • G = < V , E > G=<V,E> G=<V,E>为无向图,设 v ∈ V v\in V vV,用 G − v G-v Gv表示从 G G G中去掉 v v v v v v所关联的一切边,称为删除顶点 v v v。设 V ′ ⊂ V V'\subset V VV,用 G − V ′ G-V' GV表示从 G G G中删除 V ′ V' V中所有顶点,称为删除 V ′ V' V

说明:

  • 删边只删边,保留顶点,而删点必须删除这个点及与这个点关联的所有边
  • 删边相当于道路网络中某条主干道坏了,删点则是坏掉一个十字路口
图的边收缩、加边运算
边收缩
  • 设边 e = ( u , v ) ∈ E e=(u,v)\in E e=(u,v)E,用 G \ e G\backslash e G\e表示从 G G G中删除 e e e后,将 e e e的两个端点 u , v u,v u,v用一个新的顶点 w w w(或用 u u u v v v充当 w w w)代替,使 w w w关联除 e e e u , v u,v u,v关联的所有边,称为边 e e e的收缩
加边运算
  • u , v ∈ V u,v\in V u,vV u , v u,v u,v可能相邻,也可能不相邻),用 G ∪ ( u , v ) G\cup(u,v) G(u,v)(或 G + ( u , v ) G+(u,v) G+(u,v))表示在 u , v u,v u,v之间加一条边 ( u , v ) (u,v) (u,v)​,称为加新边

在收缩边和加新边过程中可能产生环和平行边。收缩边时一定会产生环,为了和原图的环区别,一般这个环都不记录。当还原成原图只需记录那些边被收缩了

图不交、边不交
  • G 1 = < V 1 , E 1 > , G 2 = < V 2 , E 2 > G_1=<V_1,E_1>,G_2=<V_2,E_2> G1=<V1,E1>,G2=<V2,E2>为两个图。
  • V 1 ∩ V 2 = ∅ V_1\cap V_2=\varnothing V1V2=,则称 G 1 G_1 G1 G 2 G_2 G2是不交的
  • E 1 ∩ E 2 = ∅ E_1\cap E_2=\varnothing E1E2=,则称 G 1 G_1 G1 G 2 G_2 G2是边不交的或边不重的。
  • 不交的图,必然是边不交的,但反之不真。
图的并、差、交、环和
  • G 1 = < V 1 , E 1 > , G 2 = < V 2 , E 2 > G_1=<V_1,E_1>,G_2=<V_2,E_2> G1=<V1,E1>,G2=<V2,E2>为不含孤立点的两个图(同为无向图或同为有向图)。
    • 称以 E 1 ∪ E 2 E_1\cup E_2 E1E2为边集,以 E 1 ∪ E 2 E_1\cup E_2 E1E2中边关联的顶点组成的集合为顶点集的图为 G 1 G_1 G1 G 2 G_2 G2的并图,记作 G 1 ∪ G 2 G_1\cup G_2 G1G2
    • 称以 E 1 − E 2 E_1-E_2 E1E2为边集,以 E 1 − E 2 E_1-E_2 E1E2中边关联的顶点组成的集合为顶点集的图为 G 1 G_1 G1 G 2 G_2 G2的差图,记作 G 1 − G 2 G_1-G_2 G1G2​。
    • 称以 E 1 ∩ E 2 E_1\cap E_2 E1E2为边集,以 E 1 ∩ E 2 E_1\cap E_2 E1E2中边关联的顶点组成的集合为顶点集的图为 G 1 G_1 G1 G 2 G_2 G2的交图,记作 G 1 ∩ G 2 G_1\cap G_2 G1G2
    • 称以 E 1 ⊕ E 2 E_1\oplus E_2 E1E2为边集,以 E 1 ⊕ E 2 E_1\oplus E_2 E1E2中边关联的顶点组成的集合为顶点集的图为 G 1 G_1 G1 G 2 G_2 G2的环和,记作 G 1 ⊕ G 2 G_1\oplus G_2 G1G2
图的联运算
  • G 1 , G 2 G_1,G_2 G1,G2是两个不相交的图,作 G 1 ∪ G 2 G_1\cup G_2 G1G2,并且将 G 1 G_1 G1中的每个顶点和 G 2 G_2 G2中的每个顶点连接,这样得到的新图称为 G 1 G_1 G1 G 2 G_2 G2的联图,记为 G 1 ∨ G 2 G_1\vee G_2 G1G2​。

路与圈

路与圈
  • G G G的一条**通路(或通道或途径)**是指一个有限非空序列 w = v 0 e 1 v 1 e 2 v 2 … e k v k w=v_0e_1v_1e_2v_2\ldots e_kv_k w=v0e1v1e2v2ekvk,交替为顶点和边,使得对于任意的 i ( 1 ⩽ i ⩽ k ) i(1\leqslant i\leqslant k) i(1ik) e i e_i ei的端点是 v i − 1 v_{i-1} vi1 v i v_i vi。通路中边数称为通路的长度。 v 0 , v k v_0,v_k v0,vk分别称为通路的起点与终点,其余顶点称为通路的内部点。

  • 边不重复(或各边相异)的通路称为图的一条迹(行迹)

  • 顶点不重复的通路称为图的一条路(或轨道)

    注:顶点不重边一定不重,边不重顶点不一定不重。

  • 起点与终点重合的途径、迹、路分别称为图的闭途径、闭迹与圈。闭迹也称为回路。

    注:简单来说就是一般,边不重,点不重。

  • 长度为 k k k的圈称为 k k k圈, k k k为奇数时称为奇圈, k k k​为偶数时称为偶圈。长度相同的圈都是同构的。

  • 图中 u u u v v v间最短路的长度称为顶点 u u u v v v间的距离,记作 d ( u , v ) d(u,v) d(u,v)。如果 u u u v v v间不存在路,定义 d ( u , v ) = ∞ d(u,v)=\infty d(u,v)=​​。

    注:对于没加权图而言,路的长度指路上边的条数。对于加权图而言,路的长度指路上的边权之和。距离是最短路的长度。

路与圈的性质
  • 定理:在 n n n阶图 G G G中,若从顶点 v i v_i vi v j ( v i ≠ v j ) v_j(v_i\neq v_j) vj(vi=vj)存在通路,则从 v i v_i vi v j v_j vj一定存在长度小于等于 n − 1 n-1 n1​的顶点不重复的路。
  • 定理:在 n n n阶图 G G G中,若存在 v i v_i vi到自身的回路,则一定存在 v i v_i vi到自身长度小于等于 n n n​的回路。
    • 推论:在 n n n阶图 G G G中,若存在 v i v_i vi到自身边不重的回路,则一定存在 v i v_i vi到自身长度小于等于 n n n​的圈。
扩大路径法
  • G = < V , E > G=<V,E> G=<V,E> n n n阶无向图, E ≠ ∅ E\neq\varnothing E=,设 Γ l \Gamma_l Γl G G G​中的一条路径,若此路径的始点或终点与通路外的顶点相邻,就将它们扩到通路中来。继续这一过程,直到最后得到的通路的两个端点不与通路外的顶点相邻为止。设最后得到的路径为 Γ l + k \Gamma_{l+k} Γl+k,称为极大路径。有向图需要注意在每步扩大中保持有向边方向的一致性。
    • 由某条路经扩大出的极大路径不唯一。
    • 最长路径一定是极大路径。
    • 极大路径不一定是图中最长的路径。

简单的结论:

  • 若简单图 G G G的最小度数 δ ( G ) ⩾ 2 \delta(G)\geqslant2 δ(G)2,则 G G G中存在圈。若简单图 G G G的最小度数 δ ( G ) ⩾ k \delta(G)\geqslant k δ(G)k,则 G G G中存在长度为 k k k的路。
  • ⭐️设 G G G n ( n ⩾ 3 ) n(n\geqslant3) n(n3)阶无向简单图, δ ( G ) ⩾ 2 \delta(G)\geqslant2 δ(G)2,则 G G G中存在至少长度大于等于 δ + 1 \delta+1 δ+1的圈。
  • G G G是简单图, δ ( G ) ⩾ 3 \delta(G)\geqslant3 δ(G)3,则 G G G中各圈长的最大公约数是1或者2。圈的长度 i + 1 , j + 1 , j − i + 2 ( j > i ⩾ 2 ) i+1,j+1,j-i+2(j>i\geqslant2) i+1,j+1,ji+2(j>i2)​。
连通性
  • 设无向图 G = < V , E > G=<V,E> G=<V,E> ∀ u , v ∈ V \forall u,v\in V u,vV,若 u , v u,v u,v之间存在通路,则称 u , v u,v u,v是连通的,记作 u ∼ v u\sim v uv

    ∀ v ∈ V \forall v\in V vV,规定 v ∼ v v\sim v vv

  • 若无向图 G G G是平凡图或 G G G中任意两个顶点都是连通的,则称 G G G为连通图,否则则称 G G G​是非连通图。

    完全图 K n ( n ⩾ 1 ) K_{n}(n\geqslant1) Kn(n1)都是连通图。零图 N n ( n ⩾ 2 ) N_{n}(n\geqslant2) Nn(n2)​都是非连通图。

连通图与连通分支
  • 设无向图 G = < V , E > G=<V,E> G=<V,E>,如果 V V V能划分成 { V 1 , V 2 , … , V k } \{V_{1},V_{2},\ldots,V_{k}\} {V1,V2,,Vk},当且仅当两顶点在同一子集时才连通,则称导出子图 G [ V i ] ( i = 1 , 2 , … , k ) G[V_{i}](i=1,2,\ldots,k) G[Vi](i=1,2,,k) G G G连通分支,连通支数 k k k常记为 ω ( G ) \omega(G) ω(G)​。

    G G G的每个连通分支即为图的极大连通子图

    G G G为连通图,则 ω ( G ) = 1 \omega(G)=1 ω(G)=1。若 G G G为非连通图,则 ω ( G ) ⩾ 2 \omega(G)\geqslant2 ω(G)2

    在所有的 n n n阶无向图中, n n n阶零图是连通分支数最多的,为 n n n

    例:在 n n n阶连通图中(1)至少有 n − 1 n-1 n1条边;(2)如果恰有 n − 1 n-1 n1条边,则至少有一个奇度点(悬挂点)。

    例:在仅两个奇次顶的图中,其二奇次顶连通。

    例:若 G G G是简单图,且 m > C n − 1 2 m>C_{n-1}^{2} m>Cn12,其中 m m m为图 G G G的边数, n n n为顶点数,则 G G G是连通图。

    C k 2 + C n − k 2 ⩽ C n − 1 2 C_{k}^{2}+C_{n-k}^{2}\leqslant C_{n-1}^{2} Ck2+Cnk2Cn12

    例:若 G G G δ ⩾ [ n 2 ] \delta\geqslant\left[\frac{n}{2}\right] δ[2n]的简单图,则 G G G​是连通图。

    例:若 G G G是连通简单图, G G G不是完全图,则 G G G中有三个顶点 u , v , w u,v,w u,v,w使得 u v ∈ E ( G ) , v w ∈ E ( G ) , u w ∉ E ( G ) uv\in E(G),vw\in E(G),uw\notin E(G) uvE(G),vwE(G),uw/E(G)

  • 性质:若图 G G G不连通,则其补图连通。等价于 G G G与其补图不能同时不连通。或者 G G G与其补图至少一个是连通图

  • 性质: G G G是连通图当且仅当 V ( G ) V(G) V(G)的每个分成非空子集 V 1 V_{1} V1 V 2 V_{2} V2的划分,总存在一条边,两端分别属于 V 1 V_{1} V1 V 2 V_{2} V2

周长、围长、半径、直径
  • u , v u,v u,v为无向图 G G G中任意两个顶点,若 u ∼ v u\sim v uv,称 u , v u,v u,v之间长度最短的通路为 u , v u,v u,v之间的最短路,最短路的长度称为 u , v u,v u,v之间的距离,记作 d ( u , v ) d(u,v) d(u,v)。当 u , v u,v u,v不连通时,规定 d ( u , v ) = ∞ d(u,v)=\infty d(u,v)=

    完全图 K n ( n ⩾ 2 ) K_{n}(n\geqslant2) Kn(n2)中任何两个顶点之间的距离都是1;零图 N n ( n ⩾ 2 ) N_{n}(n\geqslant2) Nn(n2)中,任何两个顶点之间的距离都是 ∞ \infty

  • 简单图中最长圈的圈长称为该图的周长

  • 简单图中最短圈的圈长称为该图的围长

  • 图中两顶点距离的最大值称为该图的直径,记为 d ( G ) d(G) d(G),即 d ( G ) = max ⁡ { d ( u , v ) ∣ ∀ u , v ∈ V ( G ) } d(G)=\max\{d(u,v)|\forall u,v\in V(G)\} d(G)=max{d(u,v)∣∀u,vV(G)}

  • 使得 max ⁡ v ∈ V ( G ) d ( u , v ) \max_{v\in V(G)}d(u,v) maxvV(G)d(u,v)最小的顶点称为图的中心。

  • 图的半径记为 r ( G ) r(G) r(G),即 r ( G ) = min ⁡ u ∈ V ( G ) max ⁡ v ∈ V ( G ) d ( u , v ) r(G)=\min_{u\in V(G)}\max_{v\in V(G)}d(u,v) r(G)=minuV(G)maxvV(G)d(u,v)

  • 定理:设图 G G G n n n阶简单图,若对 G G G中任意两个不相邻顶点 u , v u,v u,v,有 d ( u ) + d ( v ) ⩾ n − 1 d(u)+d(v)\geqslant n-1 d(u)+d(v)n1,则 G G G是连通的,且 d ( G ) ⩽ 2 d(G)\leqslant2 d(G)2​。

  • 推论:设图 G G G n n n阶简单图,若 δ ⩾ n − 1 2 \delta\geqslant\frac{n-1}{2} δ2n1,则 G G G​连通。

二部图判定定理
  • 一个无向图 G = < V , E > G=<V,E> G=<V,E>是二部图当且仅当 G G G​中无奇圈。

下一章请见:
图论 | 期末复习笔记 | (二)

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值