Open LLM Leaderboard 开源大模型排行榜

### 大规模语言模型分类 大规模语言模型可以根据其发布形式分为开源和闭源两类。以下是这两类中的代表性模型: #### 开源大规模语言模型 开源大模型因其透明性和可定制性受到广泛欢迎,许多知名模型都已公开其代码和权重文件供研究人员使用。 - **BERT系列**: BERT (Bidirectional Encoder Representations from Transformers) 是由谷歌发布的预训练语言表示模型,它通过双向Transformer架构实现了卓越的语言理解能力[^4]。 - **RoBERTa**: RoBERTa是由Facebook AI Research提出的改进版本的BERT,在多个下游任务上表现优于原始BERT,并且同样提供开源实现。 - **DistilBERT**: Hugging Face开发的一个轻量级版本的BERT,旨在减少计算资源消耗的同时保持较高的性能水平。 - **GPT-Neo/GPT-J**: EleutherAI团队基于GPT架构创建的一组大型生成式预训练变压器模型,其中部分参数量较大的模型也已经完全开放给公众下载与测试。 - **T5/MT5**: Google推出的文本到文本框架下的多功能序列转换器家族成员之一——Text-To-Text Transfer Transformer(T5),以及它的多语言扩展版MT5均提供了详细的文档说明和支持材料以便于进一步探索和发展。 #### 闭源大规模语言模型 相比之下,一些企业出于保护知识产权或者追求更高效率的原因选择了不公布内部使用的具体算法结构及其完整的数据集信息。 - **GPT系列(GPT-3,GPT-4)**: OpenAI所研发的一系列强大的预测下一个单词的能力极强的人工神经网络系统,尽管它们本身并不对外分享全部源码及训练好的模型实例,但是仍然允许第三方付费调用API接口来完成特定应用场景的任务请求[^2]。 - **通义千问(Qwen)**: 阿里巴巴集团旗下的通义实验室自主研发并持续迭代升级的一款超大规模语言模型产品线,覆盖了从基础科研实验验证直至实际生产环境部署落地全流程服务链条上的各个环节需求点位安排设置考虑因素等方面内容介绍如下所示。 - **PaLM(PanGu Lion)**: 谷歌最新推出的一种具备极高推理能力和创造力属性特征体现出来的先进人工智能技术成果展示平台项目工程实施方案设计思路分析报告书正文主体部分内容要点总结归纳提炼概括描述如下图所示。 ```python # 示例:加载HuggingFace提供的预训练模型 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") text = "Replace me by any text you'd like." input_ids = tokenizer.encode(text, return_tensors='pt') output = model.generate(input_ids=input_ids, max_length=50) print(tokenizer.decode(output[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值