大型语言模型(LLM)评估榜单提供了对不同模型性能的标准化比较,涵盖了从通用能力到特定领域应用的多个方面。这些榜单专注于评估模型在特定领域的应用能力,有助于开发者了解模型的优势和局限性,推动语言模型的发展和优化。
通用大模型榜单
1.🤗 Open LLM Leaderboard
Hugging Face 旨在展示和比较不同大型语言模型(LLMs)的性能,特别是那些可以公开访问的模型。模型将根据一系列标准进行评估,包括但不限于准确性、效率、可解释性和公平性。
在 6 个关键基准上评估模型,这是一个统一的框架,用于在大量不同的评估任务上测试生成语言模型。
- MMLU-Pro 是 MMLU 数据集的精炼版本。
- GPQA是一个极其困难的知识数据集,其中的问题是由各自领域的领域专家(生物学、物理、化学等博士级别)设计的,外行人很难回答,但对于专家来说(相对)容易回答。
- MuSR 是一个非常有趣的新数据集,由算法生成的长度约为 1K 字的复杂问题组成。
- MATH是从多个来源收集的高中水平竞赛问题的汇编,其格式一致地使用 Latex 表示方程,使用 Asymptote 表示图形。
- IFEval是一个相当有趣的数据集,它测试模型清晰遵循明确指令的能力,例如“包含关键字 x”或“使用格式 y”。
- BBH 是 BigBench数据集中 23 个具有挑战性的任务的子集,这些任务 1) 使用客观指标,2) 很困难,作为语言模型进行测量,最初并未超越人类基线,3)包含足够的样本,具有统计显着性。
2.FlagEval
相关介绍paper:FewCLUE: A Chinese Few-shot Learning Evaluation Benchmark
FlagEval由智源研究院将联合多个高校团队打造,是一种采用“能力一任务一指标"三维评测框架的大模型评测平台,旨在提供全面、细致的评测结果。该平台已提供了30多种能力、5种任务和4大类指标,共600多个维度的全面评测