TabPFN - 表格数据基础模型


一、关于 TabPFN

TabPFN是表格数据的基础模型,它优于传统方法,同时速度显着加快。该存储库包含具有CUDA优化的核心PyTorch实现。


🌐TabPFN生态系统

根据您的需求选择正确的TabPFN实现:

  • TabPFN客户端:易于使用的API客户端,用于基于云的推理
  • TabPFN扩展:社区扩展和集成
  • TabPFN(此存储库):本地部署和研究的核心实现

试试我们的交互式Colab教程,快速入门。


二、快速入门🏁

⚠️ 主要更新:2.0版: 通过新的架构和功能完成代码库大修。以前的版本在v1.0.0pip install tabpfn<2


1、安装

# Simple installation
pip install tabpfn

# Local development installation
git clone https://github.com/PriorLabs/TabPFN.git
pip install -e "tabpfn[dev]"

2、基本用法

from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score, roc_auc_score
from sklearn.model_selection import train_test_split

from tabpfn import TabPFNClassifier

# Load data
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

# Initialize a classifier
clf = TabPFNClassifier()
clf.fit(X_train, y_train)

# Predict probabilities
prediction_probabilities = clf.predict_proba(X_test)
print("ROC AUC:", roc_auc_score(y_test, prediction_probabilities[:, 1]))

# Predict labels
predictions = clf.predict(X_test)
print("Accuracy", accuracy_score(y_test, predictions))

三、使用技巧💡

TabPFN旨在以最少的预处理开箱即用:

  • 无需预处理:TabPFN在内部处理规范化
  • 类别变量:使用数字编码(浮点数表示有序,普通编码器表示无序)
  • 自动集成:控制与n_estimators
  • 独立预测:测试样本可以单独或批量预测
  • 可微:核心模型是可微的(预处理除外)
  • GPU支持:使用device='cuda'进行GPU加速

四、开发🛠️


1、设置环境

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
git clone https://github.com/PriorLabs/TabPFN.git
cd tabpfn
pip install -e ".[dev]"
pre-commit install

2、在提交之前

pre-commit run --all-files

3、运行测试

pytest tests/

2025-01-06(五)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值