模型 - Qwen 2.5

在这里插入图片描述


Qwen 2.5

  • 提供 0.5B 、1.5B 、3B 、7B 、14B 、32B 和 72B 共7种参数规模的模型
    有 基模型 和 指令微调模型 两种变体(其中“ B ”表示“十亿”, 72B 即为 720 亿)
  • 具备能力:自然语言理解、文本生成、视觉理解、音频理解、工具使用、角色扮演、作为AI Agent 进行互动等多种能力。
  • 支持 29 种语言


通义千问 (Qwen) 整体

通义千问(英文: Qwen ;读作: kùn)是由阿里巴巴通义千问团队开发的大规模语言和多模态系列模型。
通义千问可以执行自然语言理解、文本生成、视觉理解、音频理解、工具调用、角色扮演、智能体等多种任务。
语言和多模态模型均在大规模、多语言、多模态数据上进行预训练,并在高质量语料上后训练以与人类偏好对齐。


有专有版本和开放权重版本。

专有版本

  • 通义千问 (Qwen):语言模型
    • Qwen Max
    • Qwen Plus
    • Qwen Turbo
  • 通义千问 VL (Qwen-VL): 视觉语言模型
    • Qwen-VL Max
    • Qwen-VL Plus
    • Qwen-VL OCR
  • 通义千问 Audio: 音频语言模型
    • Qwen-Audio Turbo
    • Qwen-Audio ASR

更多信息可见 Alibaba Cloud Model Studio (China Site [zh], International Site).


开源模型

包括:

  • 通义千问 (Qwen):语言模型
    • Qwen: 1.8B、 7B、 14B 及 72B 模型
    • Qwen1.5: 0.5B、 1.8B、 4B、 14BA2.7B、 7B、 14B、 32B、 72B 及 110B 模型
    • Qwen2: 0.5B、 1.5B、 7B、 57A14B 及 72B 模型
    • Qwen2.5: 0.5B、 1.5B、 3B、 7B、 14B、 32B 及 72B 模型
  • 通义千问 VL (Qwen-VL): 视觉语言模型
    • Qwen-VL: 基于 7B 的模型
    • Qwen-VL: 基于 2B 、 7B 和 72B 的模型
  • 通义千问 Audio: 音频语言模型
  • Q*Q: the reasoning models
  • Code通义千问 / 通义千问Coder:代码语言模型
  • 通义千问 Math:数学语言模型
  • Qwen-Math-RM: the reward models for mathematics

2025-03-06(四)

### Qwen2.5-Coder 和 Qwen2.5 的特性差异 #### 特性对比概述 Qwen2.5-Coder 是专门为编码任务优化的大规模预训练模型,而 Qwen2.5 则是一个更广泛用途的语言模型。两者的主要区别在于应用场景和技术实现上的不同。 #### 应用场景 - **Qwen2.5-Coder** 主要针对编程和软件开发领域设计,在代码补全、错误检测以及自动化测试等方面表现出色[^2]。 - **Qwen2.5** 更侧重于自然语言处理的一般应用,如对话生成、文本摘要等通用NLP任务。 #### 技术细节 - **查询类型** - 对于 **Qwen2.5-Coder**, 解码器的查询可以分为潜在查询和文本查询两类。前者适用于解决复杂的逻辑推理题,后者则专注于理解并生成人类可读的程序文档说明[^1]。 - 而对于 **Qwen2.5**, 查询机制更加灵活多样,不仅限于上述两种形式,还包括但不限于图像描述中的视觉特征提取等多模态输入方式。 - **输出模式** - 在 **Qwen2.5-Coder** 中, 输出主要集中在提供精确的语法结构指导和支持高效的编译过程所需的语义嵌入上。 - 相较之下,**Qwen2.5** 可以产生更为丰富的输出种类,比如像素级别的掩膜预测用于目标分割或是其他计算机视觉相关的子任务。 ```python # 示例:使用Qwen2.5-Coder进行代码补全 def example_function(x): return x * # 使用Qwen2.5进行文本摘要 text = "这是一个很长的文章..." summary = model.summarize(text) print(summary) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

富婆E

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值