Dynamic GCN:Dynamic GCN: Context-enriched Topology Learning for Skeleton-based Action Recognition

Dynamic GCN: Context-enriched Topology Learning for Skeleton-based Action Recognition

动态GCN:基于骨架的动作识别的上下文丰富拓扑学习

ACM2020

未开源


关键:图结构的设计,该结构编码骨架拓扑信息

提出动态GCN(Dynamic GCN),引入一个新的CNN命名为context-encoding network(CeN)来自动学习骨架拓扑图。特别地,当学习两个关节之间的依赖性时,剩余关节的上下文特征以全局的方式整合。CeN是极轻量级但是有效,还可以被嵌入图卷积层。通过堆叠多个CeN的图卷积层,构建dynamic GCN。作为CeN的优点,为不同输入样本构建dynamic图拓扑以及不同深度的图卷积层。探索了三中可替代的上下文建模架构,可以作为对图形拓扑学习的未来研究的指导。

未来改进的三个问题:

  1. non-local-based方法,测量两个骨架关节之间的依赖性同时忽略其他上下文关节的影响,基本上可以算作是一种local method。除了底层两个关节之外,其他关节的上下文信息对于学习可靠和稳定的拓扑都至关重要。
  2. 使用像内积一样的任意功能来计算两个关节之间的依赖性,引入强的先验知识,这可能不是最佳的。
  3. 在骨架动态系统中,non-local-based方法考虑到每对关节的依赖性无向。因为每个关节的上下文信息都不一样,依赖性应该有向。对于不同查询对,他们由非本地基础方法产生的相似性可能几乎相同。

在这里插入图片描述

提出一个名为dynamic GCN的混合GCN-CNN框架,目的是通过利用CNN的特征学习能力来攻击现有的基于学习的骨架拓扑的弱点。引入一个新的CNN context-encoding network(CeN)来自动学习骨架拓扑图。可以被嵌入一个图卷积层端到端学习。与non-local-based方法比,CeN有以下优点:1)CeN从全局角度完全考虑每个关节的上下文信息。2)CeN完全是数据驱动,不要求有任何的先验知识,更加灵活。3)根据有向图和产生有向图(非对称邻接矩阵)的指向每对关节的依赖性,可以更准确的表示骨架系统的动态。4)和其他拓扑学习算法相比,CeN非常轻量级但是十分有效,可以轻松集成到基于GCN的方法中。

CeN预测每个样本的唯一图拓扑以及per-GConv层。此功能导致动态图拓扑而不是静态拓扑,提高了模型的容量和表现力。

对于CeN中的上下文模型,探索了各种特征聚合体系结构。拓扑学习背景下,周围关节的上下文信息也是十分重要。因此,CeN中特征通过将其视为通道,通过联合维度全局聚集。消融研究表明,在另外两个替代方案中,它是优越的,其中时间或特征尺寸被视为通道。提供了进一步的讨论,这可能引导未来的图形拓扑学习研究。

  1. dynamic GCN,利用GCN拓扑学习的互补性益处和CNN特征学习能力。
  2. 引入轻量级context-encoding network,全局学习丰富的上下文动态骨骼拓扑。
  3. 探索了三种可替代的上下文建模架构,可以作为未来图形拓扑学习研究的指导。

DNN-based methods:

RNN是序列数据的直接模型。RNN顺序聚合时间信息,但CNN能够共同编码时空信息。CNN旨在将图像直接分类为动作类别。虽然CEN也是CNN模型,但它旨在学习在这里插入图片描述
图形拓扑而不是最终动作识别。

GCN-based methods:

GCN能够有效地处理不规则的结构化图,如骨架数据。给定具有n个关节的骨架数据,图形拓扑结构可以通过n×n邻接矩阵A很好地表示。基于GCN的方法的关键在于图形拓扑设计,即A,最直接的方式是定义固定的图根据人体的物理连接。为了略微关注边缘,还创建了一种可学习的掩模,该掩模乘以或添加物理邻接矩阵。后来,[28]采用虚拟连接的概念作为物理邻接矩阵的补充。

在上述方法中,邻接矩阵在训练完成后预定义或固定。为了使图形拓扑更灵活,试图为不同的样本构成不同的图形。具体地,采用非本地的操作来推断两个任意关节之间的连接性。在测量两个关节之间的依赖性时,仅考虑底层两个关节的特征,而忽略上下文关节的影响。相反,在动态GCN中,所有上下文关节的特征都与所提出的CEN充分结合,以这种方式学习的图表可能更加强大和富有表现力。

method:

GCN通常包含一个图卷积块graph convolutional blocks (GC-blocks)和一个时间卷积块temporal convolutional blocks (TC-blocks),分别N关节T时间维度。GC-block: Y = ∑ k = 1 K Λ k − 1 2 A k Λ k − 1 2 X W {\rm Y}=\sum^K_{k=1}\Lambda_k^{-\frac{1}{2}} {\rm A}_k \Lambda_k^{-\frac{1}{2}}{\rm X}{\rm W} Y=k=1KΛk21

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值