PyTorch深度学习实战(6)——神经网络性能优化技术
0. 前言
我们已经学习了神经网络的基础概念,并了解了如何利用 PyTorch 库构建神经网络模型。同时我们还提到了,有多种超参数可以影响神经网络的准确率。在本节中,我们将使用 Fashion MNIST 数据集,用于构建神经网络模型执行图像分类任务,并对比使用不同参数训练模型的性能差异。
1. 数据准备
1.1 数据集分析
Fashion MNIST 数据集是一个用于图像分类任务的经典数据集,它包含了 10 个类别的时尚服饰图像。每个样本都是一张 28x28 像素的灰度图像,总共有 60000 个训练样本和 10000 个测试样本。由于其简单易用的特点,Fashion MNIST 数据集已经成为学术界和研究人员常用的基准数据集之一,可以用于验证图像分类算法的性能。
1.2 数据集加载
(1) 首先下载数据集并导入相关库,torchvision 库包含多个机器学习数据
订阅专栏 解锁全文
1万+





