PyTorch深度学习实战(6)——神经网络性能优化技术

0. 前言

我们已经学习了神经网络的基础概念,并了解了如何利用 PyTorch 库构建神经网络模型。同时我们还提到了,有多种超参数可以影响神经网络的准确率。在本节中,我们将使用 Fashion MNIST 数据集,用于构建神经网络模型执行图像分类任务,并对比使用不同参数训练模型的性能差异。

1. 数据准备

1.1 数据集分析

Fashion MNIST 数据集是一个用于图像分类任务的经典数据集,它包含了 10 个类别的时尚服饰图像。每个样本都是一张 28x28 像素的灰度图像,总共有 60000 个训练样本和 10000 个测试样本。由于其简单易用的特点,Fashion MNIST 数据集已经成为学术界和研究人员常用的基准数据集之一,可以用于验证图像分类算法的性能。

1.2 数据集加载

(1) 首先下载数据集并导入相关库,torchvision 库包含多个机器学习数据

评论 186
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值