0. 前言
我们已经学习了使用生成对抗网络 (Generative Adversarial Network, GAN) 解决各种图像生成任务。GAN
的模型架构和训练过程具有很高的灵活性,通过改进 GAN
架构设计和训练过程,研究人员提出了多种不同的网络架构,本节中,我们将介绍 ProGAN
(Progressive Growing Generative Adversarial Network
) 架构。
1. ProGAN
ProGAN
(Progressive Growing Generative Adversarial Network
)是由 NVIDIA
于 2017
年提出的生成对抗网络 (Generative Adversarial Network
, GAN
) 模型,旨在提高 GAN
训练的速度和稳定性。在 ProGAN
中,并不直接对高分辨率图像进行训练,而是首先在低分辨率图像(例如 4 × 4
像素的图像)