AIGC实战——ProGAN(Progressive Growing Generative Adversarial Network)

本文介绍了ProGAN,这是一种渐进式训练的生成对抗网络,旨在提升GAN训练的速度和稳定性。ProGAN从低分辨率开始,逐步增加网络层数以生成高分辨率图像。此外,还讨论了小批标准差、均等学习率和逐像素归一化等技术,以增强模型的多样性和稳定性。
摘要由CSDN通过智能技术生成

0. 前言

我们已经学习了使用生成对抗网络 (Generative Adversarial Network, GAN) 解决各种图像生成任务。GAN 的模型架构和训练过程具有很高的灵活性,通过改进 GAN 架构设计和训练过程,研究人员提出了多种不同的网络架构,本节中,我们将介绍 ProGAN (Progressive Growing Generative Adversarial Network) 架构。

1. ProGAN

ProGAN (Progressive Growing Generative Adversarial Network )是由 NVIDIA2017 年提出的生成对抗网络 (Generative Adversarial Network, GAN) 模型,旨在提高 GAN 训练的速度和稳定性。在 ProGAN 中,并不直接对高分辨率图像进行训练,而是首先在低分辨率图像(例如 4 × 4 像素的图像)

评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值