遗传算法与深度学习实战(1)——进化深度学习
0. 前言
深度学习 (Deep learning
, DL
) 已成为与人工智能 (Artificial Intelligence
, AI
) 和机器学习 (Machine Learning
, ML
) 爆炸式发展最相关的技术。它从被认为是一门伪科学,到被用于驾驶汽车等各种主流应用,虽然许多人认为它是未来技术的趋势,但也有人由于其日益增长的复杂性和对大量数据的依赖持更加保守的态度。
随着深度学习的复杂性增加,需要不断为其提供更多的数据,以期在特定领域取得重大突破。但通常会事与愿违,经常只得到糟糕的模型、结果。这个问题将持续存在,直到我们开发出高效的深度学习系统流程。
构建有效、鲁棒的深度学习系统的过程,与其他机器学习或数据科学过程相似。虽然在所需资源和复杂性上有所变化,但所有步骤都保持不变。而在深度学习领域,通常缺少一套可以帮助自动化某些流程的工具包。
进化深度学习 (Evolutionary Deep Learning
, EDL
) 是一套可以用于自动化深度学习系统开发的工具和实践,EDL
包括了广泛的进化计算方法和模式,可以应用于深度学习系统流程的各个方面。