Cortex-M4和Cortex-M7中的SIMD指令

本文介绍了Cortex-M4和Cortex-M7处理器中的SIMD指令,用于提升图像处理等多媒体应用的性能。虽然不支持完整的NEON指令集,但Cortex-M4和Cortex-M7支持部分SIMD指令,如并行加法和减法,包括饱和和非饱和运算。通过这些指令,开发者可以对嵌入式系统进行优化,提高运算速度。
摘要由CSDN通过智能技术生成

SIMD指令简介

单指令多数据流,即SIMD(Single Instruction, Multiple Data)指一类能够在单个指令周期内同时处理多个数据元素的指令集,利用的是数据级并行来提高运行效率。

不同处理器架构所支持的SIMD指令集各不相同,比如嵌入式处理器ARM Cortex-A系列中支持NEON指令集。而我们常用的ARM Cortex-M系列单片机则使用了ARMv6-M/ARMv7-M架构,指令集较为简化,不支持NEON。其中Cortex-M4和Cortex-M7所使用的指令集也被称为ARMv7E-M,支持部分SIMD指令。对于Cortex-A系列来说,其指令集向下包含,即许多Cortex-M中的SIMD指令,也能够在Cortex-A中使用。

SIMD指令集的最初设计目标就是为了提高多媒体应用的性能(图像相关运算),因为图像数据的像素点都是8位数据,而CPU寄存器通常是32位以上的,因此一条指令只用于计算一个像素点不免显得非常浪费。在32位处理器上,可以用SIMD指令一次性计算4个8位数据,极大地提升了运算效率。

直接使用C语言编写的程序,编译器是不会自动翻译成SIMD指令的。因此为了在嵌入式处理器如单片机上提升图像数据运算速度,需要专门使用SIMD指令进行优化。得益于SIMD指令加速,我们能够在STM32F4上实现简单的光流算法,有兴趣的可以看一下PX4Flow的算法部分。为了能够在优化图像算法,使其能以较快速度运行于嵌入式平台,熟悉掌握SIMD指令是非常有必要的,下面列出一些可以在Cortex-M4和Cortex-M7上使用的SIMD指令(不全面,忽略了部分16位操作数指令),Cortex-A系列处理器基本上都兼容这些指令,当然在那上面还有强大的NEON指令集可以使用。

在STM32的库文件core_cm4_simd.h中可以看到所有SIMD指令的宏定义

部分SIMD指令说明

饱和加法: a+b=c,当计算结果大于c可表示的最大值或者小于c可表示的最小值时,计算结果取值为这个最大值或最小值。

非饱和加法: a+b=c,如果计算结果一出,则直接去掉一出位,剩下的就是结果。

  • __USAD8
    指令说明:无符号值的差的绝对值求和
    指令定义:uint32_t __USAD8 (uint32_t val1, uint32_t val2)
    指令操作:
absdiff1  = val1[7:0]   - val2[7:0]
absdiff2  = val1[15:8]  - val2[15:8]
absdiff3  = val1[23:16] - val2[23:16]
absdiff4  = val1[31:24] - val2[31:24]
res[31:0] = absdiff1 + absdiff2 + absdiff3 + absdiff4
  • __USADA8
    指令说明:无符号值的差的绝对值求和累加
    指令定义:uint32_t __USADA8 (uint32_t val1, uint32_t val2, uint32_t val3)
    指令操作:
absdiff1  = val1[7:0]   - val2[7:0]
absdiff2  = val1[15:8]  - val2[15:8]
absdiff3  = val1[23:16] - val2[23:16]
absdiff4  = val1[31:24] - val2[31:24]
sum       = absdiff1 + absdiff2 + absdiff3 + absdiff4
res[31:0] = sum[31:0] + val3[31:0]

并行加法

  • __SADD8
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值