深度学习压缩感知(DCS)历史最全资源汇总分享

本文综述了基于深度学习的压缩感知技术,介绍了多种用于图像压缩和重建的深度学习模型,如DCSNet、CSNet、DeepInv等,涵盖单尺度和多尺度采样,以及基于框架的压缩感知。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling),稀疏采样(Sparse sampling),压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、生物医学工程等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展

    本文整理了基于深度学习的压缩感知(Deep Compressive Sensing,DCS)相关的最新论文、代码实验源代码等资源集合。源代码、pdf、doi等资源都是可用的。相关工作根据采样矩阵类型(基于框架/基于block)、采样规模(single scale、multi-scale)和深度学习平台进行分类。

     

    其他部分给出了除采样、图像/视频重建以外的代码。

 

    本文资源整理自网络,源地址:https://github.com/ngcthuong/Reproducible-Deep-Compressive-Sensing

 

Single-Scale Sensing

    TIP-CSNet     

    W. Shi et al., Image Compressed Sensing using Convolutional Neural Network, IEEE Trans. Image Process, 2019.

 

    Perceptual-CS

    J. Du, X. Xie, C. Wang, and G. Shi, "Perceptual Compressive Sensing," Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pp. 268 - 279, 2018.

 

    ISTA-Net     

    Z. Jian and G. Bernard, "ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing", IEEE International Conference on Computer Vision and Pattern Recognition, 2018.

 

    CSNet   

    W. Shi, F. Jaing, S. Zhang, and D. Zhao, "Deep networks for compressed image sensing", IEEE International Conference on Multimedia and Expo (ICME), 2017.

 

    DeepInv  

    A. Mousavi, R. G. Baraniuk et al., "Learning to invert: Signal recovery via Deep Convolutional Networks," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2017.

 

    DBCS       

    A. Adler, D.Boublil, and M. Zibulevsky, "Block-based compressed sensing of images via deep learning,", IEEE International Workshop on Multimedia Signal Processing (MMSP), 2017.

 

    DR2Net       

    H. Yao, F. Dai, D. Zhang, Y. Ma, S. Zhang, Y. Zhang, and Q. Tian, "DR2-net: Deep residual reconstruction network for image compressive sensing", arXiv:1702.05743, 2017.

 

    CS-CAE     

    S. Schneider, "A deep learning approach to compressive sensing with convolutional autoencoders," tech. report, 2016.

 

    ReconNet         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值