压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling),稀疏采样(Sparse sampling),压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、生物医学工程等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展
本文整理了基于深度学习的压缩感知(Deep Compressive Sensing,DCS)相关的最新论文、代码实验源代码等资源集合。源代码、pdf、doi等资源都是可用的。相关工作根据采样矩阵类型(基于框架/基于block)、采样规模(single scale、multi-scale)和深度学习平台进行分类。
其他部分给出了除采样、图像/视频重建以外的代码。
本文资源整理自网络,源地址:https://github.com/ngcthuong/Reproducible-Deep-Compressive-Sensing
Single-Scale Sensing
TIP-CSNet
W. Shi et al., Image Compressed Sensing using Convolutional Neural Network, IEEE Trans. Image Process, 2019.
Perceptual-CS
J. Du, X. Xie, C. Wang, and G. Shi, "Perceptual Compressive Sensing," Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pp. 268 - 279, 2018.
ISTA-Net
Z. Jian and G. Bernard, "ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing", IEEE International Conference on Computer Vision and Pattern Recognition, 2018.
CSNet
W. Shi, F. Jaing, S. Zhang, and D. Zhao, "Deep networks for compressed image sensing", IEEE International Conference on Multimedia and Expo (ICME), 2017.
DeepInv
A. Mousavi, R. G. Baraniuk et al., "Learning to invert: Signal recovery via Deep Convolutional Networks," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2017.
DBCS
A. Adler, D.Boublil, and M. Zibulevsky, "Block-based compressed sensing of images via deep learning,", IEEE International Workshop on Multimedia Signal Processing (MMSP), 2017.
DR2Net
H. Yao, F. Dai, D. Zhang, Y. Ma, S. Zhang, Y. Zhang, and Q. Tian, "DR2-net: Deep residual reconstruction network for image compressive sensing", arXiv:1702.05743, 2017.
CS-CAE
S. Schneider, "A deep learning approach to compressive sensing with convolutional autoencoders," tech. report, 2016.
ReconNet