Deepfake = Deep+fake. 广义上来说,Deepfake是使用深度学习来糊弄人类感知的技术。比如,视频换脸技术,或者语音上的换音技术。而在笔者所研究的方向中,Deepfake指代视觉上的换脸技术。
Deepfake技术是一把双刃剑。在娱乐行业中,Deepfake便受到短视频的青睐,比如抖音的换脸特效,比如ZAO的电影片段换脸等等,这项技术是能够直接带来经济效益的。但另一方面,Deepfake技术会带来一些政治上、社会上的危害,比如借助此技术制造虚假国家领导人视频,传播虚假政治rumor;又比如P站禁止的换脸H色视频,这会侵犯受害人的权益。
Deepfakes Detection 数据集、工具、论文和代码的列表。如果此列表对您的研究有所帮助,我很高兴给您一颗星。为了更好的比较和研究目的,我们还收集了我们可以在视频级别的 Celeb-DF、DFDC 和 FaceForensic++ 数据集上获得的所有 SOTA 方法的基准。我们使用 AUC 分数 (%) 作为指标。
资源整理自网络,源地址:https://github.com/Daisy-Zhang/Awesome-Deepfakes-Detection
目录
内容截图