[Erlang 学习笔记]Erlang 简单实现 KMP--字符串匹配算法

关于KMP算法的概念,大家应该都知道的了,具体可以参看wiki,研究研究,或google了解。。。。。。

不说废话,上代码  =。=


%%%-------------------------------------------------------------------
%%% @author lqg <>
%%% @copyright (C) 2012, lqg
%%% @doc
%%%
%%% @end
%%% Created : 26 Jul 2012 by lqg <>
%%%-------------------------------------------------------------------
-module(kmp).

%% API
-export([patch/2]).

-define(Len(X),array:size(X)).
-define(Get(X,Y),array:get(X,Y)).
-define(Same(X,Y),string:equal(X,Y)).
-define(Set(X,Y,Z),array:set(X,Y,Z)).


%%% I,Content数组下标
%%% J,Keyword数组下标
%%% Next,Keyword数组用于回溯的值数组
patch(Content,Keyword) ->
    I=0,J=0,
    Next = get_next(Keyword),
    compare(I,J,Content,Keyword,Next).

%%% C,Content
%%% K,Keyword
%%% N,Next
compare(I,J,C,K,N)->
    case I < ?Len(C) of
	true ->
	    case J== -1 of
		true -> I1=I+1,
			J1=J+1,
			compare(I1,J1,C,K,N);
		false ->
		    case ?Same(?Get(I,C),?Get(J,K)) of
			true -> I1=I+1,
				J1=J+1,
				case J1==?Len(K) of
				    true ->
					{true,{I-J,I}};  %%含有关键词,返回关键词范围
				    false ->
					compare(I1,J1,C,K,N)
				end;
			false ->
			    J1=?Get(J,N),
			    compare(I,J1,C,K,N)
		    end
	    end;
	false ->
	    false                                        %%不含关键词
    end.

%%% K,Keyword
%%% H J ,Next数组下标,H<J
%%% N, Next
get_next(K)->
    H=-1,J=0,
    N=array:new(array:size(K)),
    N1=?Set(0,-1,N),
    get_next(K,N1,H,J).

%%% K,Keyword
%%% H J ,Next数组下标,H<J
%%% N, Next
get_next(K,N,H,J)->
    case J < ?Len(K)-1 of
	true->	    
	    case H ==-1 of
		true -> J1=J+1,
			H1=H+1,
			N1=?Set(J1,H1,N),
			get_next(K,N1,H1,J1);
		false ->
		    case ?Same(?Get(J,K),?Get(H,K)) of
			       true->J1=J+1,
				     H1=H+1,
				     N1=?Set(J1,H1,N),
				     get_next(K,N1,H1,J1);
			       false->
				      H1=?Get(H,N),
				      get_next(K,N,H1,J)
		    end
	    end;
	false ->
	    N
    end.

代码简单实现了KMP算法,但是我担心的是Next[ ]生成的时候会产生过多的内存消耗,就是 N1=?Set(J1,H1,N) 这个跌代,但是erlang的工作地方不是内存,而是代码,只要不是atom,没问题的 。。。。。。

由于对erlang的函数没太多的使用,可能以上的n行代码可以用一个函数代替,

由于时间的问题,我没有深究,如果哪位仁兄又发现,可以call我,感谢!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值