python机器学习案例系列教程——K最近邻算法(KNN)、kd树

全栈工程师开发手册 (作者:栾鹏)

python数据挖掘系列教程

K最近邻简介

K最近邻属于一种估值或分类算法,他的解释很容易。
我们假设一个人的优秀成为设定为1、2、3、4、5、6、7、8、9、10数值表示,其中10表示最优秀,1表示最不优秀。
我们都知道近朱者赤,近墨者黑,我们想看一个人是什么样的,看他的朋友是什么样的就可以了。

1、如何来考察一个人?
我们通过特征属性来描述一个对象的特征,例如是否抽烟、是否运动、工资、年龄。

2、怎样才算是跟朋友亲近?
通过计算距离函数来表示两个对象的相似度。例如具有相同的习惯、兴趣

3、不同亲近程度的朋友对考察人的影响?
通过为不同距离设置权重,来表示不同近邻对待测对象的亲近度。例如5个亲近朋友中,最亲密的两个朋友对考察人物的影响非常大,其他三个朋友的影响几乎可以忽略。

4、选多少个亲近朋友来考察比较合适呢?
k的取值问题

K最近邻(KNN)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值