《高斯牛顿优化算法--第一讲》原理推导

这里写图片描述

高斯牛顿是非线性最小二乘的一种优化算法,采用逐步迭代的方法,把非线性问题变成一步一步迭代的线性问题,从而达到极值收敛。在第二讲我会以加速度计的校准为例子,进行高斯牛顿的实际应用讲解。好吧,我们第二讲见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值