不久前OpenAI Sora以其惊人的视频生成效果迅速走红,在一众文生视频模型中突出重围,成为全球瞩目的焦点。继2周前推出成本直降46%的Sora训练推理复现流程后,Colossal-AI团队推出新的开源方案「Open-Sora 1.0」,涵盖了整个训练流程,包括数据处理、所有训练细节和模型权重,携手全球AI热爱者共同推进视频创作的新纪元。
先睹为快,我们先看一段由Colossal-AI团队发布的「Open-Sora 1.0」模型生成的都市繁华掠影视频。

这仅仅是Sora复现技术冰山的一角,关于以上文生视频的模型架构、训练好的模型权重、复现的所有训练细节、数据预处理过程、demo展示 和 详细的上手教程,Colossal-AI团队已经全面免费开源在GitHub,感兴趣的朋友可以关注Open-Sora的开源社区,我们将不断更新Open-Sora的相关解决方案和最新动态。
Open-Sora 开源地址
https://github.com/hpcaitech/Open-Sora
全面解读Sora复现方案
接下来,我们将深入解读Sora复现方案的多个关键维度,包括模型架构设计、训练复现方案、数据预处理、模型生成效果展示以及高效训练优化策略。
模型架构设计
我们的模型采用了目前火热的Diffusion Transformer (DiT) [1] 架构。我们以同样使用DiT架构的高质量开源文生图模型PixArt-α [2] 为基座,在此基础上引入时间注意力层,将其扩展到了视频数据上。具体来说,整个架构包括一个预训练好的VAE,一个文本编码器,和一个利用空间-时间注意力机制的 STDiT (Spatial Temporal Diffusion Transformer)模型。其中,STDiT 每层的结构如下图所示。它采用串行的方式在二维的空间注意力模块上叠加一维的时间注意力模块,用于建模时序关系。在时间注意力模块之后,交叉注意力模块用于对齐文本的语意。与全注意力机制相比,这样的结构大大降低了训练和推理开销。与同样使用空间-时间注意力机制的 Latte [3] 模型相比,STDiT 可以更好的利用已经预训练好的图像 DiT 的权重,从而在视频数据上继续训练。