前几天因为要写粒子滤波相关的文章,而里面的公式让我写理论总结的时候都想哭。然而大部分粒子滤波的程序写的都比较简单明了,我也不知道是不是根本程序就没按照理论来实现。主要是里面的概率论公式,尤其以什么先验概率、后验概率那几个东东在那里折腾来折腾去,真心想问一句烦不烦啊……搜了一些东西,我相信绝大多数人对概率这个东西的理解都是模糊不清的,因为它本身就是一个不确定性的……(就像云里雾里的 云计算和物联网一样)刚好最近在看Game Theory,对经济学也有点兴趣,所以越发感觉概率这玩意深不可测……脑细胞、神经元什么的不够用……
对上帝来说,一切都是确定的,因此概率作为一门学问存在,正好证明了人类的无知。好在人类还是足够聪明的,我们并没有因为事物是随机的而束手无措,我们根据事物的可能性来决定我们的行为。比如,某个人抢银行之前,一定反反复复考虑过各种可能性。如果人们要等到一切都确定后再做,那么你可能什么都做不了,因为几乎一切都是随机的。
一个事情有N种发生的可能性,我们不能确信哪种会发生,是因为我们不能控制结果的发生,影响结果的许多因素不在我们的支配范围之内,这些因素影响结果的机理或者我们不知道,或者太复杂以至于超出了我们大脑或电脑的运算能力。比如:我们不确定掷硬币得到正面或反面,是因为我们的能力不足以用一些物理方程来求解这个结果。再比如:你不能断定你期末能考88分,因为出题、阅卷的不是你。
过去发生的事情虽然事实上是确定的,但因为我们的无知,它成了随机的。我们在某个地方挖出了一块瓷器的碎片,它可能是孔子的夜壶,可能是秦始皇的餐具,也可能是林校长家的破茶壶从他家到垃圾站又被埋在了这个地方。
因此:概率在实质上就是无知,而不是说事物本身是随机的。
你拿着一把锄头在操场上乱挖,忽然发现一个暗室。里面是什么情景呢?应该说一切皆有可能。你根据你的大脑已储存的东西能做出一些可能性判断,有些可能性高,如“里面是黑的”。有些可能性低:如发现“本拉登在这里打麻将”。有无限的可能性,也可能藏着一个杀人犯,也可能有毒蛇,……。你对每种场景的可能性认识就是概率分布P(Ai)。这样的概率就是先验概率。
你是否能听到狗叫也是随机的,你对此的概率判断P(y), (y表示会听到狗叫)也是先验判断。如果接下来你确实听见了狗叫,你对洞中情形虽然也不确定,但肯定会有新的判断:“本拉登边吃狗肉边打麻将”、“几个狗在打麻将”、“一只狗想念另一只狗,在这里放录音”……。这些场景先前当然你也想到过(是某个Ai之一),不过现在“听到狗叫”后,你的概率判断发生了变化,你现在的判断就叫后验概率P(Ai|y)。
事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率.
先验概率是指根据以往经验和分析得到的概率,如全概率公式 中的,它往往作为“由因求果”问题中的“因”出现。后验概率是指在得到“结果”的信息后重新修正的概率,是“执果寻因”问题中的“因” 。
后验概率是基于新的信息,修正原来的先验概率后所获得的更接近实际情况的概率估计。
先验概率和后验概率是相对的。如果以后还有新的信息引入,更新了现在所谓的后验概率,得到了新的概率值,那么这个新的概率值被称为后验概率。
关于“抛硬币”试验的概率问题。
问题是这样的:1、多次抛硬币首先是一个贝努利试验,独立同分布的
2、每次抛硬币出现正、反面的概率都是1/2
3、当然硬币是均匀同分布的,而且每次试验都是公正的
4、在上述假设下,假如我连续抛了很多次,例如100次,出现的都是正面,当然,稍懂概率的人都知道,这是一个小概率事件,但是小概率事件是可能发生的。我要问你,下次也就是我抛第101次,出现正、反的概率是不是相等。我认为是不相等的,出现反面的概率要大于正面。我的理由是,诸如“抛硬币”等独立同分布试验都有无数人试验过,而且次数足够多时,正、反面出现的概率应该是逼近1/2的。也就是说,这个过程,即使是独立同分布的试验它也是有概率的。
5、提出这个问题之后,我请教了很多同学和老师,大部分同学一开始都是乍一听这个问题,马上对我的观点提出批判,给我列条件概率的公式,举出种种理由,不过都被我推翻了很巧的是,没几天,我在图书馆过期期刊阅览室找到一篇关于独立同分布的newman定理推广到markov链过程的文章,见97年《应用统计研究》,我看不大懂,复印了下来,去请教我们系数理统计方面比较权威的老师,他的答复我基本满意。他将数理统计可以分为两大类:频率统计学派和贝叶斯统计学派。
目前,国内的数理统计主要是频率统计。又给我分析了什么是先验概率,先验概率和条件概率有什么区别,他认为:在“抛硬币”试验当中,硬币的均匀分布和抛的公正是先验条件或先验概率,但是抛100次正面却是条件概率,接着他又解释了概率的记忆功能,他讲当贝努利试验次数不够大的时候,它不具有记忆功能,次数足够大的时候,也就是服从二项分布时,具有记忆功能。这时,连续抛很多次正面就可以算作是先验概率。但这样,我又不懂了。我认为,即使只刚抛过1次,如果考虑这个过程的话,对第二次的结果也应该是有影响的,你们认为呢?这个问题,这位老师也没能解释好。
研究这个问题的启示或者意义:
1、推翻了一些东西,可能很大,也可能是我牛角尖钻的太深了
2、一个试验,我在一间屋子里做“抛硬币”的试验,我“一不小心”连续抛出了100次正面,这里请你不要怀疑硬币质地的均匀和我抛法的不公正,这时,你推门进了实验室,我和你打赌,下次抛硬币会出现反面,给你很高的赌注。因为我知道我已经抛了100次正面,在这个过程中正反面出现的概率是要往1:1均衡的。但是我不会告诉你,我已经连续抛了100次正面。你当然认为正反面出现的概率是1:1,而且你的理论依据也是正确的。但是,你的正确的理论可能会使你输钱的。
3、研究这个问题,我是想提出两个问题:其一,正确的理论可能得不出正确的结果,其二,信息的不对称问题。 验前概率就是通常说的概率,验后概率是一种条件概率,但条件概率不一定是验后概率。贝叶斯公式是由验前概率求验后概率的公式。举一个简单的例子:一口袋里有3只红球、2只白球,采用不放回方式摸取,求:⑴ 第一次摸到红球(记作A)的概率;⑵ 第二次摸到红球(记作B)的概率;⑶ 已知第二次摸到了红球,求第一次摸到的是红球的概率。解:⑴ P(A)=3/5,这就是验前概率;⑵ P(B)=P(A)P(B|A)+P(A逆)P(B|A逆)=3/5⑶ P(A|B)=P(A)P(B|A)/P(B)=1/2,这就是验后概率。
一道经典概率题的终极解法——后验事实与先验概率的关系
经典题目:
有三个门,里面有一个里有汽车,如果选对了就可以得到这辆车,当应试者选定一个门之后,主持人打开了另外一个门,空的。问应试者要不要换一个选择。假设主持人知道车所在的那个门。
经典解法:
第一次选择正确的概率是1/3,因此汽车在另外两个门里的概率是2/3。主持人指出一个门,如果你开始选错了(2/3概率),则剩下的那个门里100%有汽车;如果你第一次选对(1/3)了,剩下那个门里100%没汽车。
所以主持人提示之后,你不换的话正确概率是1/3*100%+2/3*0=1/3,你换的话正确概率是1/3*0+2/3*100%=2/3。
对于这个解法的诘问就在于,现在主持人已经打开一个空门了(而且主持人是有意打开这个门的),在这一“信息” 出现后,还能说当初选错的概率是2/3吗?这一后验事实不会改变我们对于先验概率的看法吗?答案是会的。更具体地说,主持人打开一扇门后,对当初选择错误的概率估计不一定等于2/3。
从头说起。假设我选了B门,假设主持人打开了C门,那么他在什么情况下会打开C门呢?
若A有车(先验概率P=1/3),那主持人100%打开C门(他显然不会打开B);
若B有车(先验概率P=1/3),那此时主持人有A和C两个选择,假设他以K的概率打开C(一般K=1/2,但我们暂把它设成变量);
若C有车(先验概率P=1/3),那主持人打开C的概率为0(只要他不傻。。。)
已知他打开了C,那根据贝叶斯公式——这里P(M|N)表示N事件发生时M事件发生的概率:
P(B有车|C打开)= P(C打开|B有车)* p(B有车)/ P(C打开)
P(C打开|B有车)* p(B有车)
= P(C打开|A有车)* p(A有车)+ P(C打开|B有车)* p(B有车)
K * 1/3
= 1 * 1/3 + K * 1/3
K
= -------
K + 1
该值何时等于1/3 呢(也就是经典解法里的假设)? 只有 K=1/2 时。也就是一般情况下。但如果主持人有偏好,比方说他就是喜欢打开右边的门(假设C在右边),设K=3/4, 那么B有车的概率就变成了 3/5,不再是1/3,后验事实改变了先验概率的估计!
但这并不改变正确的选择,我们仍然应该改选A门, 解释如下:
P(A有车|C打开)= P(C打开|A有车)* p(A有车)/P(C打开)
P(C打开|A有车)* p(A有车)
= ------------------------------------------------------------
P(C打开|A有车)* p(A有车)+ P(C打开|B有车)* p(B有车)
= 1 * 1/3/1 * 1/3 + K * 1/3
=1/k+1
而K < 1(假设主持人没有极端到非C不选的程度),所以永远有 P(B有车|C打开) < P( A有车|C打开).A有车的概率永远比B大,我们还是应该改变选择。