随着人工智能技术的飞速发展,DeepSeek 和 GPT 4o 成为了备受瞩目的两款语言模型。它们在自然语言处理领域展现出了强大的能力,但在诸多方面也存在着差异。下面将从多个维度对这两者进行对比分析。
一、模型架构
(一)DeepSeek
DeepSeek 采用混合专家(MoE)架构 ,在处理任务时仅激活 37B 参数。这种架构使得模型能够更高效地利用资源,在面对不同类型任务时,通过动态分配计算资源到不同的专家模块,从而在保持较低计算成本的同时,实现较好的性能表现。例如在处理大量文本数据时,MoE 架构能快速将任务分配到最合适的模块,提升处理速度。
(二)GPT 4o
GPT 4o 基于传统 Transformer 架构构建。Transformer 架构以其强大的并行计算能力和对长序列数据的处理能力而闻名,能够捕捉文本中的长距离依赖关系 ,在处理复杂语义和长文本时表现出色。不过相比 DeepSeek 的 MoE 架构,其参数规模更大且灵活性稍显不足,在资源利用效率上可能不如 DeepSeek。
二、训练数据与成本
(一)训练数据
- DeepSeek:使用了 14.8 万亿高质量标记数据进行预训练 ,并分阶段将上下文长度扩展至 32k 和 128k,使其对各种自然语言处理任务有更广泛的理解和应对能力,在处理长文本任务时表现出较高的准确性。
- GPT 4o:虽然预训练数据量未公开,但推测在数十 T token 级别。其凭借大规模的语料库训练,在多领域知识储备和语言理解上有深厚基础。
(二)训练成本
- DeepSeek:基于 H800 GPU 集群进行训练,成本仅为 550 万美元 ,在模型训练成本控制上表现出色,为后续模型的推广和应用降低了门槛。
- GPT 4o:训练成本估计高达 5 亿美元 ,高昂的训练成本限制了模型的快速迭代和更广泛应用。
三、性能表现
(一)生成速度
- DeepSeek:DeepSeek-V3 的生成速度提升至 60 TPS(每秒生成 60 个 Token) ,是前代模型的 3 倍,快速的生成速度使其在处理实时性要求较高的任务,如即时问答、实时聊天场景中表现出色。
- GPT 4o:生成速度虽未公开,但预计在数十 TPS 级别,相对 DeepSeek 的生成速度稍慢。
(二)任务表现
- 知识问答:在 MMLU、GPQA 等知识类任务中,DeepSeek-V3 的表现接近 Claude-3.5-Sonnet-1022(国际顶尖模型) ,尤其在中文知识问答(如 C-SimpleQA)上表现更优;GPT 4o 在知识类任务上表现优异,尤其在复杂推理和知识检索方面能力突出。
- 长文本处理:在 DROP、LongBench v2 等长文本测评中,DeepSeek-V3 的平均表现超越了 GPT 4o ,其长上下文窗口(最高达 128k tokens)在处理复杂文档时更精准;GPT 4o 也能稳定处理长文本复杂上下文信息。
- 代码生成:DeepSeek-V3 在算法类代码场景(如 Codeforces)中领先于 GPT 4o ,但在工程类代码场景(SWE-Bench Verified)中稍逊一筹;GPT 4o 在代码生成和调试方面表现出色,尤其在复杂算法和工程代码场景中优势明显。
- 数学能力:DeepSeek-V3 在数学竞赛(如 AIME 2024)中的表现超过了 GPT 4o ,在逻辑分解和数学问题求解上更胜一筹。
四、应用场景与用户体验
(一)通用场景
- DeepSeek:在日常的文本生成、问题解答等任务中表现良好,能满足普通用户大部分基础需求,其免费版(如 R1)在复杂问题解答中提供验证步骤,更易让用户理解推理过程。
- GPT 4o:对话式交互更友好,在创意写作(如故事生成)、复杂推理等方面表现更稳定,语言风格更自然,适合日常问答和激发创意灵感。
(二)特定场景
- 中文场景:DeepSeek 在中文翻译、诗歌创作等任务中更符合本土语境 ,能模仿李商隐、苏轼等古代诗人风格进行创作,优于 GPT 4o 的直译或通用化输出;GPT 4o 在中文处理上也有不错能力,但在贴合中文文化背景和语境方面不如 DeepSeek。
- 技术场景:在数学竞赛、算法代码生成等技术任务场景中,DeepSeek 表现优异 ,逻辑分解能力更强;GPT 4o 在复杂技术问题的多模态处理(如结合代码与文本解释)上也有独特优势。
五、开放性与定价
(一)开放性
- DeepSeek:开源了模型权重,支持本地部署和定制化开发 ,开发者可以根据自身需求对模型进行调整和优化,这对于企业和开发者降低长期维护成本、实现个性化应用非常有利。
- GPT 4o:闭源模型,用户只能通过 API 调用,无法进行本地部署和定制,限制了一些对模型有深度定制需求的用户。
(二)API 定价
- DeepSeek:每百万输入 Token 成本为 0.5 元(缓存命中)至 2 元(缓存未命中),输出 Token 为 8 元 / 百万 ,价格优势明显,对于有大规模文本处理需求的企业来说,使用成本较低。
- GPT 4o:定价预计为每百万 Token 数十美元 ,相比 DeepSeek 成本差距显著。