opencv系列学习(2)

二 opencv核心模块

5.1 离散傅里叶变换

傅立叶变换会将图像分解成其正弦和余弦分量。换句话说,它将图像从空间域转换到频率域。这个想法是,任何函数都可以用无限的正弦和余弦函数之和精确地近似。傅立叶变换是一种方法。数学上,二维图像的傅里叶变换为:

5.2 代码解析

#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
static void help(char ** argv)
{
    cout << endl
        <<  "This program demonstrated the use of the discrete Fourier transform (DFT). " << endl
        <<  "The dft of an image is taken and it's power spectrum is displayed."  << endl << endl
        <<  "Usage:"                                                                      << endl
        << argv[0] << " [image_name -- default lena.jpg]" << endl << endl;
}
int main(int argc, char ** argv)
{
    help(argv);
    const char* filename = argc >=2 ? argv[1] : "lena.jpg";
    Mat I = imread( samples::findFile( filename ), IMREAD_GRAYSCALE);
    if( I.empty()){
        cout << "Error opening image" << endl;
        return EXIT_FAILURE;
    }
    Mat padded;                            //expand input image to optimal size
    int m = getOptimalDFTSize( I.rows );
    int n = getOptimalDFTSize( I.cols ); // on the border add zero values
    copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
    Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
    Mat complexI;
    merge(planes, 2, complexI);         // Add to the expanded another plane with zeros
    dft(complexI, complexI);            // this way the result may fit in the source matrix
    // compute the magnitude and switch to logarithmic scale
    // => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
    split(complexI, planes);                   // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
    magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
    Mat magI = planes[0];
    magI += Scalar::all(1);                    // switch to logarithmic scale
    log(magI, magI);
    // crop the spectrum, if it has an odd number of rows or columns
    magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
    // rearrange the quadrants of Fourier image  so that the origin is at the image center
    int cx = magI.cols/2;
    int cy = magI.rows/2;
    Mat q0(magI, Rect(0, 0, cx, cy));   // Top-Left - Create a ROI per quadrant
    Mat q1(magI, Rect(cx, 0, cx, cy));  // Top-Right
    Mat q2(magI, Rect(0, cy, cx, cy));  // Bottom-Left
    Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right
    Mat tmp;                           // swap quadrants (Top-Left with Bottom-Right)
    q0.copyTo(tmp);
    q3.copyTo(q0);
    tmp.copyTo(q3);
    q1.copyTo(tmp);                    // swap quadrant (Top-Right with Bottom-Left)
    q2.copyTo(q1);
    tmp.copyTo(q2);
    normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
                                            // viewable image form (float between values 0 and 1).
    imshow("Input Image"       , I   );    // Show the result
    imshow("spectrum magnitude", magI);
    waitKey();
    return EXIT_SUCCESS;
}
  • 放大图像至最佳尺寸
    DFT的性能取决于图像大小。对于数字二,三和五的倍数的图像,它通常是转换的。因此,要获得最佳性能,通常最好将边框值填充到图像上并具有这样的效果。特征的尺寸。所述getOptimalDFTSize()返回该最佳尺寸和我们可以使用copyMakeBorder()函数以展开的图像(在预先估计与零初始化)的边界:
Mat padded;                            //expand input image to optimal size
    int m = getOptimalDFTSize( I.rows );
    int n = getOptimalDFTSize( I.cols ); // on the border add zero values
    copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
  • 兼顾复杂和真实的价值
    傅立叶变换的结果很复杂。这意味着对于每个图像值,结果是两个图像值(每个分量一个)。而且,频域范围比其空间对应范围大幅度。因此,我们通常至少以浮点格式存储这些内容。因此,我们将输入图像转换尺寸类型,并使用另一个通道将其扩展以容纳复杂值:
    Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
    Mat complexI;
    merge(planes, 2, complexI);         // Add to the expanded another plane with zeros
  • 进行离散傅立叶变换
 dft(complexI, complexI);            // this way the result may fit in the source matrix
  • 将真实和复杂的值转换为幅度
    公式:
    split(complexI, planes);                   // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
    magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
    Mat magI = planes[0];
  • 切换到对数刻度
    公式: M1=log(1+M)
    magI += Scalar::all(1);                    // switch to logarithmic scale
    log(magI, magI);
  • 裁剪和重新划分
 // crop the spectrum, if it has an odd number of rows or columns
    magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
    // rearrange the quadrants of Fourier image  so that the origin is at the image center
    int cx = magI.cols/2;
    int cy = magI.rows/2;
    Mat q0(magI, Rect(0, 0, cx, cy));   // Top-Left - Create a ROI per quadrant
    Mat q1(magI, Rect(cx, 0, cx, cy));  // Top-Right
    Mat q2(magI, Rect(0, cy, cx, cy));  // Bottom-Left
    Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right
    Mat tmp;                           // swap quadrants (Top-Left with Bottom-Right)
    q0.copyTo(tmp);
    q3.copyTo(q0);
    tmp.copyTo(q3);
    q1.copyTo(tmp);                    // swap quadrant (Top-Right with Bottom-Left)
    q2.copyTo(q1);
    tmp.copyTo(q2);
  • 归一化
    出于可视化目的再次进行此操作。现在我们有了幅度,但是这仍然超出了我们的图像显示范围(从零到一)。我们使用cv::normalize()函数将值标准化到该范围。
normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a
                                            // viewable image form (float between values 0 and 1).
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值