如何在DataFrame 中优雅的增加一行,一列

<font color=‘darkgreen’,size=4.5>    优雅的增加一行,一定要优雅!
my微信 luogantt2

df=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four'])  
df.loc['new_raw'] = '3'

df
Out[84]: 
        one two three four
a         0   1     2    3
b         4   5     6    7
c         8   9    10   11
d        12  13    14   15
new_raw   3   3     3    3

<font color=‘green’,size=4.5>    优雅的增加一列,一定要优雅!

df['new_colu']='12'#向 DataFrame 添加一列,该列为同一值

df
Out[93]: 
        one two three four new_colu
a         0   1     2    3       12
b         4   5     6    7       12
c         8   9    10   11       12
d        12  13    14   15       12
new_raw   3   3     3    3       12

在这里插入图片描述

### 将 Spark 数据框中的列转换为 NumPy 数组并处理线性代数错误 在大数据环境中,将分布式存储的 Spark 数据帧(DataFrame)中的某一列提取出来,并将其转换为本地内存中的 NumPy 数组是一项常见需求。然而,在完成此操作之后,如果对该数组执行某些复杂的线性代数运算(如 Schur 分解),则可能会遇到诸如 `numpy.linalg.LinAlgError` 这样的异常。 #### 转换流程概述 要从 Spark DataFrame 中获取一列并将之转成 NumPy 数组,需遵循如下几个关键步骤: 1. **收集数据至驱动程序**: 使用 `.collect()` 方法可把分布在集群节点上的 RDD 或 DataFrame 行记录聚合回单机环境。 2. **映射目标字段值列表化**: 提取特定列对应的全部单元格内容形成 Python 列表对象。 3. **构建 NumPy 数组实例**: 凭借前述所得纯量序列初始化 ndarray 实体用于后续科学计算任务。 下面给出具体实现代码示例[^4]: ```python from pyspark.sql import SparkSession import numpy as np # 初始化 Spark Session spark = SparkSession.builder \ .appName("Convert Column To Numpy Array") \ .getOrCreate() data = [(float(i), ) for i in range(1, 6)] columns = ["numbers"] df = spark.createDataFrame(data, columns) # 收集指定列的数据到本地 collected_data = df.select('numbers').rdd.flatMap(lambda x: x).collect() np_array = np.array(collected_data) print(np_array) ``` #### 防范线性代数错误策略 针对之前提到过的关于 Schur 分解所引发的 `numpy.linalg.LinAlgError` ,这里介绍几种预防措施以及解决方案: - **验证输入矩阵合法性**:确保待分解的目标是一个正方形形状的二维数组;如果不是,则提前调整使其符合要求后再继续下一步骤[^5]。 ```python assert square_matrix.shape[0]==square_matrix.shape[1],"Input matrix must be squared!" ``` - **增强数值鲁棒性**:采用双精度浮点数代替默认设置以减少舍入误差累积效应带来的负面影响[^6]。 ```python robust_square_matrix=np.float64(square_matrix) ``` - **捕捉异常并反馈用户友好型消息**:利用 try-except 结构包裹易出现问题的部分以便优雅降级而非粗暴终止整个应用程序运行流[^7]. ```python from scipy.linalg import schur def attempt_schur_decomp(mat): success=False output=None message="" try: t,z=schur(mat) success=True output=(t,z) except np.linalg.LinAlgError as lae: message=f"Linear Algebra Error Occurred:{str(lae)}" finally: return {"success":success,"output":output,"message":message} ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值