论文《一种金融市场预测的深度学习模型:FEPA》(3)--EMD+PCA

(1)EMD----Emprical mode decomposition 经验模态分解

原文 链接: http://blog.sina.com.cn/s/blog_55954cfb0102e9y2.html

https://blog.csdn.net/luolang_103/article/details/85680883

美国工程院士黄锷博士于1998年提出的一种信号分析方法:经验模态分解(Empirical Mode Decomposition)即EMD法,它是一种自适应的数据处理或挖掘方法,非常适合非线性,非平稳时间序列的处理,本质上是对数据序列或信号的平稳化处理。

1:关于时间序列平稳性的一般理解

所谓时间序列的平稳性,一般指宽平稳,即时间序列的均值和方差为与时间无关的常数,其协方差与时间间隔有关而也与时间无关。简单地说,就是一个平稳的时间序列指的是:遥想未来所能获得的样本时间序列,我们能断定其均值、方差、协方差必定与眼下已获得的样本时间序列等同。反之,即样本时间序列的均值、方差、协方差非常数,我们便称这样的样本时间序列是非平稳的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值