(1)EMD----Emprical mode decomposition 经验模态分解
原文 链接: http://blog.sina.com.cn/s/blog_55954cfb0102e9y2.html
美国工程院士黄锷博士于1998年提出的一种信号分析方法:经验模态分解(Empirical Mode Decomposition)即EMD法,它是一种自适应的数据处理或挖掘方法,非常适合非线性,非平稳时间序列的处理,本质上是对数据序列或信号的平稳化处理。
1:关于时间序列平稳性的一般理解:
所谓时间序列的平稳性,一般指宽平稳,即时间序列的均值和方差为与时间无关的常数,其协方差与时间间隔有关而也与时间无关。简单地说,就是一个平稳的时间序列指的是:遥想未来所能获得的样本时间序列,我们能断定其均值、方差、协方差必定与眼下已获得的样本时间序列等同。反之,即样本时间序列的均值、方差、协方差非常数,我们便称这样的样本时间序列是非平稳的。