- 偏差和方差估计
- 欠拟合、过拟合与偏差、方差的关系
- 如何解决过拟合问题
- 模型选择
前提:第
i
i
i个空间下对应一组数据
{
(
x
1
,
y
)
,
(
x
2
,
y
)
,
.
.
.
,
(
x
n
,
y
)
}
\{(x_1,y), (x_2,y),...,(x_n,y)\}
{(x1,y),(x2,y),...,(xn,y)}, 我们设计一组函数集
{
f
i
∣
f
i
=
w
i
x
+
b
i
,
i
=
1
,
.
.
.
,
n
}
\{f_i| f_i= w_ix+b_i, i=1,...,n\}
{fi∣fi=wix+bi,i=1,...,n},对应的每个样本
x
x
x, 每个回归模型有对应的估计值
y
^
i
\hat{y}_i
y^i。因此每个模型都有自己的均值
m
i
m_i
mi和方差
s
i
s_i
si。
偏差和方差估计
偏差估计
方差估计
欠拟合、过拟合与偏差、方差的关系
偏差大:模型无法准确的拟合训练数据—>欠拟合
方法大:模型可以准确的拟合训练数据,但与测试数据的差别较大–>过拟合。
如何解决过拟合问题
模型选择
选择一个bias小,variance小的模型。
N折交叉验证
图片来源:李宏毅机器学P5