李宏毅机器学习-P5误差来自哪里

  • 偏差和方差估计
  • 欠拟合、过拟合与偏差、方差的关系
  • 如何解决过拟合问题
  • 模型选择

前提:第 i i i个空间下对应一组数据 { ( x 1 , y ) , ( x 2 , y ) , . . . , ( x n , y ) } \{(x_1,y), (x_2,y),...,(x_n,y)\} {(x1,y),(x2,y),...,(xn,y)}, 我们设计一组函数集 { f i ∣ f i = w i x + b i , i = 1 , . . . , n } \{f_i| f_i= w_ix+b_i, i=1,...,n\} {fifi=wix+bi,i=1,...,n},对应的每个样本 x x x, 每个回归模型有对应的估计值 y ^ i \hat{y}_i y^i。因此每个模型都有自己的均值 m i m_i mi和方差 s i s_i si
偏差和方差估计
偏差估计
在这里插入图片描述
方差估计
在这里插入图片描述
欠拟合、过拟合与偏差、方差的关系
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
偏差大:模型无法准确的拟合训练数据—>欠拟合
方法大:模型可以准确的拟合训练数据,但与测试数据的差别较大–>过拟合
如何解决过拟合问题
在这里插入图片描述
模型选择
选择一个bias小,variance小的模型。
N折交叉验证
在这里插入图片描述
图片来源:李宏毅机器学P5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值