【WebGL学习日报】22/09/06 : 线性代数:向量与矩阵

线性代数是数学的一个分支,研究的是向量,向量空间,线性变换,处理线性关系问题,在webgl中,图形是由一个个的三角组成的,而三角是由一个个顶点组成的 ,图形的变换就意味着空间中顶点的变换,为了计算变换后顶点的位置,就需要掌握线性代数。

收获

  • 向量: 具有方向及大小的量,可以形象的把向量当做带有箭头的线段,具有起点和终点,对于给定的起点A和终点B,向量可以记作向量AB(上方有→)。向量的大小被称为向量的记作|AB|(顶上加→)
  • 基,线性组合与张成的空间: 基是描述向量空间的基本工具,亦称基底。 向量间的缩放再相加的操作就是线性组合,假如有向量a = k1* v+k2* w 那么称a为向量组v和w的线性组合或线性表示;v和w的所有线性组合构成的空间,为向量v和w张成的空间;两个向量不在一条线上即该组中任意一个向量都不能被其他几个向量线性表示则为线性无关; 如果vw线性无关,那么{v,w}便称为该向量空间的一组,基的元素称为基向量,一个向量空间的基可以有很多,只要满足不共线的一组向量都可做基底
  • 为什么要有基: 基可以便捷的描述向量空间,比如考察向量空间v的一个线性变换f,可以查看这个变换作用在一组基B上的效果,掌握了f(B),就等于掌握了线性变换对V中任意一元素的效果。
  • 矩阵的意义: 矩阵是线性变换的映射,研究矩阵就达到了研究线性变换的目的; 当我们看到一个矩阵,他代表的是面或者空间的变换,矩阵相乘意味着空间的连续变换;矩阵具有结合性,即A(BC)=(AB)C
  • 行列式: 线性变换改变面积的比例,就是这个线性变换的行列式。假设一个线性变换的行列式为3,就是说他的区域面积变为了原来的三倍,区域原有的图形也会等比例缩放。 当空间的定向发生改变时(被翻转)行列式为负。一个nxn的方针A的行列式记为det(A)或|A|

总结

线性代数中基,矩阵,行列式这些概念把抽象的几何问题具象化,基是研究坐标系的工具,矩阵是这个坐标系中处理向量线性变换的工具,行列式体现出了线性变换中的面积变化。
明日计划: 学习三角函数,然后回归到webgl书本上

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值