【一文了解】大模型微调的方法LoRA

大模型微调是深度学习中的一项关键技术,它允许我们在已有的预训练模型上,通过进一步的训练来适应特定的任务或数据集。在众多的Fine-Tuning方法中,LoRA(Low-Rank Adaptation)是一种轻量且高效的大型语言模型微调方法。与全参数微调相比,这种方法显著减少了训练的参数量,从而降低了GPU内存需求和训练时间。本篇我将为各位同学介绍一下大模型微调的方法-LoRA。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

01

核心思想

LoRA的核心思想是假设大语言模型的预训练权重已经包含了丰富的知识,直接微调所有参数会非常耗时且需要大量的计算资源。微调的任务只是对这些知识进行轻微的调整。因此,LoRA并不直接修改预训练的权重,而是在模型的每一层注入低秩矩阵,通过训练这些低秩矩阵来实现模型的适配。

因此,LoRA通过引入两个低秩矩阵A和B,并将它们相乘后加到原始权重矩阵上,实现对模型的微调,从而不需要改变整个模型的权重。

02

具体步骤

如上图所示,ΔW的分解意味着我们用了两个较小的LoRA矩阵A和B来表示大型矩阵ΔW。如果A的行数与ΔW相同,B的列数与ΔW相同,那么我们可以将分解表示为ΔW = AB。(这里的AB表示矩阵A和B的矩阵相乘的结果。)

根据以上分析,步骤如下:

1. 冻结预训练模型的权重: LoRA 不会修改预训练模型的原始权重,而是将它们冻结。

2. 注入秩分解矩阵: 在 Transformer 的每一层,LoRA 向原始权重矩阵 W 添加一个低秩矩阵更新 ΔW,其中 ΔW = BA。

- A 是一个降维矩阵,将输入特征映射到一个低维空间。

- B 是一个升维矩阵,将低维空间的特征映射回原始特征空间。

- A 和 B 的秩远小于 W 的秩。

3. 训练秩分解矩阵: 在微调过程中,只有 A 和 B 的参数会被训练,而原始权重矩阵 W 保持不变。

4. 合并权重矩阵: 在推理阶段,可以将 ΔW 与 W 合并,得到最终的权重矩阵 W’ = W + ΔW。

03

优势与劣势

优势:

  • 更少的内存需求: LoRA 只需要存储和更新低秩矩阵 `A` 和 `B`,大大减少了GPU内存需求,使得在单个GPU上微调大型语言模型成为可能。

  • 更快的训练速度: 由于需要更新的参数数量减少,LoRA 的训练速度比全参数微调更快。

  • 更好的性能: LoRA 在许多任务上都取得了与全参数微调相当甚至更好的性能。

  • 易于合并和切换: 不同的LoRA权重可以轻松地与基础模型合并或切换,方便实验和部署。

劣势:

  • 并非所有模型都适用:LoRA 最适合 Transformer 架构的模型,对于其他类型的模型可能需要进行修改。

  • 低秩假设的限制: LoRA 的性能依赖于低秩假设,如果目标任务需要对模型进行大幅度的修改,LoRA 的性能可能会受到限制。

04

总结

LoRA 是一种高效的大模型微调方法,它通过冻结预训练权重并注入低秩矩阵,显著减少了内存需求和训练时间,同时保持了良好的性能。 它已成为微调大型语言模型的一种流行技术,并被广泛应用于各种下游任务。在实际应用中,LoRA可以与预训练模型的权重合并,以便在生产环境中使用,而不引入额外的推理延迟。这意味着在微调后,模型可以像以前一样进行推理,而不需要对模型结构进行任何修改。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### GitHub上的Stable Diffusion LoRA训练教程 #### 使用LoRA进行微调的基础概念 在GitHub项目`haofanwang/Lora-for-Diffusers`中提供了易于理解的指导文档,帮助研究人员利用低秩适应(LoRA)技术,在不破坏预训练权重的情况下有效地调整大型模型。这种方法允许开发者仅需少量数据即可实现特定领域或风格的艺术作品生成能力提升[^1]。 #### 安装环境配置 为了能够在本地环境中顺利运行基于PyTorch框架构建的Stable Diffusion与Diffusers库相结合的工作流,建议按照官方指南完成必要的依赖项安装,并通过命令行参数`--enable-insecure-extension-access`来启用某些可能未经过安全验证但对实验至关重要的扩展功能[^2]。 #### 数据准备阶段 当一切就绪之后,下一步就是收集并整理用于训练的数据集。这通常涉及到图像标注工作以及确保所使用的图片质量满足要求。对于想要应用LoRA机制的具体案例而言,还需要特别注意输入特征的设计方式及其维度大小的选择等问题[^4]。 #### 训练过程概述 实际操作过程中,可以参照仓库内给出的例子脚本启动训练任务。这些示例不仅展示了如何加载预训练模型作为起点,还介绍了怎样定义损失函数、优化器以及其他超参数设置等内容。值得注意的是,在此期间应当密切关注日志输出中的各项指标变化情况以便及时作出相应调整。 ```bash # 假设已经克隆了上述提到的GitHub仓库到当前目录下 cd Lora-for-Diffusers/examples/ python train_lora.py \ --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" \ --dataset_name="your_dataset_directory_here" \ --output_dir="./results" ``` #### 调试技巧分享 如果遇到任何问题或者性能瓶颈,可以通过查阅相关资料获取更多关于调试的信息和支持。例如,《Debug Stable Diffusion WebUI》一文中提到了一些常见的错误提示及解决方案;而《Sampling Methods》则深入探讨了几种不同的采样策略及其应用场景[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值