大模型微调是深度学习中的一项关键技术,它允许我们在已有的预训练模型上,通过进一步的训练来适应特定的任务或数据集。在众多的Fine-Tuning方法中,LoRA(Low-Rank Adaptation)是一种轻量且高效的大型语言模型微调方法。与全参数微调相比,这种方法显著减少了训练的参数量,从而降低了GPU内存需求和训练时间。本篇我将为各位同学介绍一下大模型微调的方法-LoRA。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
01
核心思想
LoRA的核心思想是假设大语言模型的预训练权重已经包含了丰富的知识,直接微调所有参数会非常耗时且需要大量的计算资源。微调的任务只是对这些知识进行轻微的调整。因此,LoRA并不直接修改预训练的权重,而是在模型的每一层注入低秩矩阵,通过训练这些低秩矩阵来实现模型的适配。
因此,LoRA通过引入两个低秩矩阵A和B,并将它们相乘后加到原始权重矩阵上,实现对模型的微调,从而不需要改变整个模型的权重。
02
具体步骤
如上图所示,ΔW的分解意味着我们用了两个较小的LoRA矩阵A和B来表示大型矩阵ΔW。如果A的行数与ΔW相同,B的列数与ΔW相同,那么我们可以将分解表示为ΔW = AB。(这里的AB表示矩阵A和B的矩阵相乘的结果。)
根据以上分析,步骤如下:
1. 冻结预训练模型的权重: LoRA 不会修改预训练模型的原始权重,而是将它们冻结。
2. 注入秩分解矩阵: 在 Transformer 的每一层,LoRA 向原始权重矩阵 W 添加一个低秩矩阵更新 ΔW,其中 ΔW = BA。
- A 是一个降维矩阵,将输入特征映射到一个低维空间。
- B 是一个升维矩阵,将低维空间的特征映射回原始特征空间。
- A 和 B 的秩远小于 W 的秩。
3. 训练秩分解矩阵: 在微调过程中,只有 A 和 B 的参数会被训练,而原始权重矩阵 W 保持不变。
4. 合并权重矩阵: 在推理阶段,可以将 ΔW 与 W 合并,得到最终的权重矩阵 W’ = W + ΔW。
03
优势与劣势
优势:
-
更少的内存需求: LoRA 只需要存储和更新低秩矩阵 `A` 和 `B`,大大减少了GPU内存需求,使得在单个GPU上微调大型语言模型成为可能。
-
更快的训练速度: 由于需要更新的参数数量减少,LoRA 的训练速度比全参数微调更快。
-
更好的性能: LoRA 在许多任务上都取得了与全参数微调相当甚至更好的性能。
-
易于合并和切换: 不同的LoRA权重可以轻松地与基础模型合并或切换,方便实验和部署。
劣势:
-
并非所有模型都适用:LoRA 最适合 Transformer 架构的模型,对于其他类型的模型可能需要进行修改。
-
低秩假设的限制: LoRA 的性能依赖于低秩假设,如果目标任务需要对模型进行大幅度的修改,LoRA 的性能可能会受到限制。
04
总结
LoRA 是一种高效的大模型微调方法,它通过冻结预训练权重并注入低秩矩阵,显著减少了内存需求和训练时间,同时保持了良好的性能。 它已成为微调大型语言模型的一种流行技术,并被广泛应用于各种下游任务。在实际应用中,LoRA可以与预训练模型的权重合并,以便在生产环境中使用,而不引入额外的推理延迟。这意味着在微调后,模型可以像以前一样进行推理,而不需要对模型结构进行任何修改。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓