摘要
DeepSeek 作为强大的大模型,提供了优质的基础能力,但在某些特定任务上,直接使用预训练模型可能无法满足需求。本篇文章将介绍 LoRA(Low-Rank Adaptation)、全参数微调 等微调策略,并提供详细的代码示例,帮助开发者高效定制 DeepSeek 以适应特定任务。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
为什么要微调 DeepSeek?
虽然 DeepSeek 具备强大的通用能力,但在特定任务(如医学、法律、金融等领域),直接使用可能会导致:
- 模型泛化能力不足:无法精准理解专业术语或行业特定语言风格。
- 推理性能欠佳:无法高效完成某些需要深度推理的任务。
- 资源浪费:直接使用完整大模型进行训练需要极高计算资源。
因此,采用高效微调策略(如 LoRA、全参数微调)可以在减少计算资源消耗的同时,实现高效定制化优化。
常见微调策略
-
LoRA(低秩适配):
- 适用于 计算资源有限 的场景。
- 只对部分权重进行低秩矩阵更新,减少显存占用。
- 训练速度快,适合小样本微调。
-
全参数微调(Full Fine-tuning):
- 适用于 计算资源充足,任务复杂 的场景。
- 对模型所有参数进行更新,适用于大规模数据训练。
- 训练成本高,但微调效果最佳。
LoRA 微调 DeepSeek
LoRA(Low-Rank Adaptation)是一种高效的参数高效微调方法。其核心思想是在预训练权重的基础上添加可训练的低秩适配层,从而减少计算开销。
环境准备
安装依赖
pip install torch transformers peft accelerate
加载 DeepSeek 模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepseek-ai/deepseek-mistral-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
LoRA 配置
from peft import LoraConfig, get_peft_model
# 配置 LoRA 训练参数
lora_config = LoraConfig(
r=8, # 低秩矩阵的秩
lora_alpha=32, # LoRA 缩放因子
lora_dropout=0.1, # dropout 率
bias="none",
target_modules=["q_proj", "v_proj"], # 仅对部分层进行微调
)
# 应用 LoRA
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
训练 LoRA
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./lora_model",
per_device_train_batch_size=4,
num_train_epochs=3,
save_steps=100,
logging_dir="./logs",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=my_train_dataset, # 替换为你的数据集
)
trainer.train()
全参数微调 DeepSeek
全参数微调适用于 数据量大、任务复杂 的场景,需要对模型所有参数进行更新,计算资源消耗较高。
环境准备
pip install deepspeed transformers torch
加载 DeepSeek 模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepseek-ai/deepseek-mistral-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
配置训练参数
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="./full_finetune",
per_device_train_batch_size=2,
num_train_epochs=3,
save_strategy="epoch",
report_to="tensorboard",
logging_dir="./logs",
deepspeed="./ds_config.json" # DeepSpeed 加速
)
训练模型
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=my_train_dataset, # 替换为你的数据集
)
trainer.train()
LoRA vs. 全参数微调
方式 | 计算资源 | 适用场景 |
---|---|---|
LoRA | 低 | 轻量级微调,适合小数据集 |
全参数微调 | 高 | 需要强大计算资源,适合大规模训练 |
QA 环节
Q1: LoRA 训练后如何推理?
from peft import PeftModel
# 加载微调后的模型
fine_tuned_model = PeftModel.from_pretrained(model, "./lora_model")
fine_tuned_model.eval()
input_text = "DeepSeek 在 NLP 领域的应用有哪些?"
inputs = tokenizer(input_text, return_tensors="pt")
output = fine_tuned_model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Q2: 如何加速全参数微调?
可以结合 DeepSpeed 或 FSDP(Fully Sharded Data Parallel) 进行优化:
{
"zero_optimization": {
"stage": 2,
"offload_optimizer": "cpu",
"offload_param": "none"
}
}
并在 TrainingArguments
中启用:
training_args = TrainingArguments(deepspeed="./ds_config.json")
总结
- LoRA 适用于计算资源有限的场景,通过低秩适配微调模型关键层,减少训练开销。
- 全参数微调适用于大规模训练任务,但计算资源消耗大,适合计算能力强的环境。
- 结合 DeepSpeed、FSDP 可优化全参数微调的训练效率。
未来展望
- 探索 PEFT(Parameter-Efficient Fine-Tuning)优化方案
- 结合 RLHF(人类反馈强化学习)优化微调效果
- 探索更高效的模型量化(如 QLoRA)以降低部署成本
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓