本文尝试将将常规的CNN-LSTM-注意力进行替换为新的模块,创新性很强。
1.LSTM
LSTM(Long Short-Term Memory,长短期记忆网络)是一种特殊的递归神经网络(RNN),设计用于解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入记忆单元和门控机制,可以在长时间跨度内保持和更新关键信息,从而在许多序列数据任务中表现出色。
LSTM的结构
LSTM的基本单元包括以下三个主要组件:
-
细胞状态(Cell State):
- 细胞状态是LSTM的核心部分,贯穿整个序列的数据流。它相当于一个直通通道,允许信息以最少的修改通过时间步长传播。细胞状态通过加法和乘法操作来控制信息的传递和遗忘,避免了梯度消失问题。
-
门控机制(Gates): LSTM通过三个门控来调节信息的流动:
- 遗忘门(Forget Gate):决定细胞状态中哪些信息需要被遗忘。它接受前一时间步长的隐藏状态和当前输入,通过一个Sigmoid激活函数输出一个0到1之间的值,控制信息是否被丢弃。
- 输入门(Input Gate):决定当前时间步长的新信息对细胞状态的更新程度。输入门与当前输入和前一隐藏状态结合,通过Sigmoid激活函数输出控制信号。
- 输出门(Output Gate):决定细胞状态中的哪些部分将作为隐藏状态输出,并传递到下一时间步长。输出门通过Sigmoid激活函数,结合当前输入和前一隐藏状态,生成下一步的隐藏状态。
-
隐藏状态(Hidden State):
- 隐藏状态是LSTM输出的主要内容,也是传递到下一个时间步长的信息。它包含了LSTM单元对当前时间步长输入和细胞状态的理解。
2.WTC
论文成功地利用小波变换(WT)提出了WTConv层,这是一种新的CNN层,能够在不大幅增加参数的情况下显著增加感受野。WTConv层通过在小波域中进行卷积操作,实现了对输入数据的多频率响应,这使得网络能够更好地捕捉低频信息,从而提高了对形状的敏感性,并增强了网络的鲁棒性。实验结果表明,WTConv层在多个视觉任务中都取得了性能提升,证明了其有效性。
具体论文地址:https://arxiv.org/abs/2407.05848v2
3.FECAM
提出的频率增强通道注意力机制(FECAM)是一种基于离散余弦变换(DCT)的方法,用于解决时间序列预测中的高频噪声问题。传统的傅里叶变换虽然能够提取数据中的频率信息,但容易因为Gibbs现象引入不必要的高频噪声,导致预测结果的偏差。通过使用DCT,FECAM能够更好地捕捉和建模通道间的频率依赖性,从而提升模型的预测精度和泛化能力。
具体论文地址:https://arxiv.org/abs/2212.01209
4.数据集
数据集都可以,只要是时间序列格式,不限领域,类似功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。可以做验证模型,对比模型。格式类似顶刊ETTH的时间序列格式即可。
比如这里是时间列+7列影响特征+1列预测特征
5.源码地址及代码讲解(免费)
源码地址:https://space.bilibili.com/51422950?spm_id_from=333.1007.0.0
6.代码功能
代码适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序直接预测。