【NOI 2010】【BZOJ 2005】【JZOJ 2225】能量采集

24 篇文章 0 订阅
6 篇文章 0 订阅

Description

这里写图片描述
这里写图片描述
对于100%的数据: 1n,m100,000

Analysis

首先,让我们想一想,线段上会碰到多少个植物其实是什么?
假设坐标为 (dn,dm),d=gcd(n,m),x=nd,y=md
那么对于所有的 xi,yi(xin,yim) 都会被直线碰到。
这样的坐标 (x,y) nx=my=d 个,就是 gcd(n,m)
当然实际不算 (n,m) 本身,所以实际是 gcd(n,m)1 个。
所以,我们可以愉快地玩耍了。

Ans=i=1nj=1m2(gcd(i,j)1)1

=2i=1nj=1mgcd(i,j)nm

前面后面的部分都水,主要是 部分,一看,嘿嘿,标准莫比乌斯反演形式。
f(d) 表示 gcd(i,j)=d 的个数, g(d) 表示 d|gcd(i,j) 的个数。
我们有
g(d)=i=1ndf(di)

反演
f(d)=i=1ndg(di)μ(i)

易知 g(di)=ndimdi ,代回原式
f(d)=i=1ndndimdiμ(i)

Ans=2d=1ndf(d)nm

=2d=1ndi=1ndndimdiμ(i)nm

其实直接上这个式子就能过了,后面那个分块跑得更快一些,但是我比较无聊打了两个分块,快得飞飞飞飞飞起。

Code

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=100010;
ll n,m,pri[N],mu[N];
bool bz[N];
void pre()
{
    mu[1]=1;
    fo(i,2,n)
    {
        if(!bz[i]) bz[i]=1,mu[i]=-1,pri[++pri[0]]=i;
        fo(j,1,pri[0])
        {
            ll t=i*pri[j];
            if(t>n) break;
            bz[t]=1;
            if(i%pri[j]==0)
            {
                mu[t]=0;
                break;
            }
            mu[t]=mu[i]*mu[pri[j]];
        }
    }
    fo(i,1,n) mu[i]+=mu[i-1];
}
int main()
{
    scanf("%lld %lld",&n,&m);
    if(n>m) swap(n,m);
    pre();
    ll j,ans=0;
    for(ll i=1;i<=n;i=j+1)
    {
        j=min(n/(n/i),m/(m/i));
        ll n1=n/i,m1=m/i,j1,t=0;
        for(ll i1=1;i1<=n1;i1=j1+1)
        {
            j1=min(n1/(n1/i1),m1/(m1/i1));
            t+=(n1/i1)*(m1/i1)*(mu[j1]-mu[i1-1]);
        }
        ans+=(i+j)*(j-i+1)/2*t;
    }
    printf("%lld",2*ans-n*m);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值