【NOI 2010】【BZOJ 2005】【JZOJ 2225】能量采集

Description

这里写图片描述
这里写图片描述
对于100%的数据:1n,m100,000

Analysis

首先,让我们想一想,线段上会碰到多少个植物其实是什么?
假设坐标为(dn,dm),d=gcd(n,m),x=nd,y=md
那么对于所有的xi,yi(xin,yim)都会被直线碰到。
这样的坐标(x,y)nx=my=d个,就是gcd(n,m)
当然实际不算(n,m)本身,所以实际是gcd(n,m)1个。
所以,我们可以愉快地玩耍了。

Ans=i=1nj=1m2(gcd(i,j)1)1

=2i=1nj=1mgcd(i,j)nm

前面后面的部分都水,主要是部分,一看,嘿嘿,标准莫比乌斯反演形式。
f(d)表示gcd(i,j)=d的个数,g(d)表示d|gcd(i,j)的个数。
我们有
g(d)=i=1ndf(di)

反演
f(d)=i=1ndg(di)μ(i)

易知g(di)=ndimdi,代回原式
f(d)=i=1ndndimdiμ(i)

Ans=2d=1ndf(d)nm

=2d=1ndi=1ndndimdiμ(i)nm

其实直接上这个式子就能过了,后面那个分块跑得更快一些,但是我比较无聊打了两个分块,快得飞飞飞飞飞起。

Code

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=100010;
ll n,m,pri[N],mu[N];
bool bz[N];
void pre()
{
    mu[1]=1;
    fo(i,2,n)
    {
        if(!bz[i]) bz[i]=1,mu[i]=-1,pri[++pri[0]]=i;
        fo(j,1,pri[0])
        {
            ll t=i*pri[j];
            if(t>n) break;
            bz[t]=1;
            if(i%pri[j]==0)
            {
                mu[t]=0;
                break;
            }
            mu[t]=mu[i]*mu[pri[j]];
        }
    }
    fo(i,1,n) mu[i]+=mu[i-1];
}
int main()
{
    scanf("%lld %lld",&n,&m);
    if(n>m) swap(n,m);
    pre();
    ll j,ans=0;
    for(ll i=1;i<=n;i=j+1)
    {
        j=min(n/(n/i),m/(m/i));
        ll n1=n/i,m1=m/i,j1,t=0;
        for(ll i1=1;i1<=n1;i1=j1+1)
        {
            j1=min(n1/(n1/i1),m1/(m1/i1));
            t+=(n1/i1)*(m1/i1)*(mu[j1]-mu[i1-1]);
        }
        ans+=(i+j)*(j-i+1)/2*t;
    }
    printf("%lld",2*ans-n*m);
}
发布了369 篇原创文章 · 获赞 119 · 访问量 17万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览