代码系列:Keras实现自定义contrastive loss及多输入多输出model

本文介绍了如何在Keras中实现自定义的对比损失函数,并应用于多输入多输出模型。通过构建孪生网络,计算样本对的特征向量距离,并根据标签计算对比损失。模型结构包括共享参数的两个输入,输出预测和对比损失。在Keras中,通过Lambda层计算损失,并在compile阶段将自定义损失作为输出的一部分。
摘要由CSDN通过智能技术生成

以contrastive loss为例,contrastive loss用于成对的数据(pair data),通常出现在孪生网络(siamese network)中,公式如下:

其中,X_1,X_2表示输入的pair data的特征向量;Y表示pair data的标签是否相同,取值为0(不同)或1(相同);D_W表示X_1,X_2之间的距离(一般为欧式距离),表达式如下:

因此整个contrastive loss的定义为:输入的pair data如果是同一类(标签相同Y=1),loss取第一项,则它们的特征向量X_1,X_2之间的距离D_W要尽量小;如果不是同一类(标签不同Y=0),loss取第二项,则它们的特征向量X_1,X_2之间的距离

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值