解线性方程组的各种情况

解线性方程组的各种情况讨论。本文主要介绍解线性方程组的各种情况以及解的情况。已知线性方程组的形式如下

A x = b Ax=b Ax=b

其中 A A A是一个 m × n m\times n m×n矩阵。根据 A A A的性质,
解的情况有好几种。根据 n , m n,m n,m之间的大小, 我们可以把 A A A矩阵分为三种情况

m = n m=n m=n

m = n m=n m=n时, A A A是一个方阵。 如果 A A A可逆, 则有唯一解。如果 A A A不可逆时,
解的情况要分成两种情况讨论。于是我们得到下面的结论。

A A A 可逆

有唯一解

A A A不可逆

此种情况我们分成两种情况讨论 b ∉ s p a n ( A ) b\notin span(A) b/span(A) b ∈ s p a n ( A ) b\in span(A) bspan(A).
其中 s p a n ( A ) span(A) span(A)表示 A A A的列向量所张成的空间。

b ∈ s p a n ( A ) b\in span(A) bspan(A)

因为 m = n m=n m=n A A A不可逆,所以 r a n k ( A ) < n rank(A)<n rank(A)<n或者说 r a n k ( A ) < m rank(A)<m rank(A)<m。故而,
我们这个方程有无数个解。

b ∉ s p a n ( A ) b\notin span(A) b/span(A)

无解

m < n m<n m<n

此种情况我们分成两种情况讨论 b ∉ s p a n ( A ) b\notin span(A) b/span(A) b ∈ s p a n ( A ) b\in span(A) bspan(A).

b ∉ s p a n ( A ) b\notin span(A) b/span(A)

无解

b ∈ s p a n ( A ) b\in span(A) bspan(A)

由于 m < n m<n m<n, 所以 r a n k ( A ) ⩽ m < n rank(A)\leqslant m<n rank(A)m<n. 故而我们有无数个解。

m > n m>n m>n

此种情况我们分成两种情况讨论 b ∉ s p a n ( A ) b\notin span(A) b/span(A) b ∈ s p a n ( A ) b\in span(A) bspan(A).

b ∉ s p a n ( A ) b\notin span(A) b/span(A)

无解

b ∈ s p a n ( A ) b\in span(A) bspan(A)

在这种情况下, 我们还要分成两种情况

r a n k ( A ) < n rank(A)<n rank(A)<n

无数组解

r a n k ( A ) = n rank(A)=n rank(A)=n

因为 r a n k ( A ) = n rank(A)=n rank(A)=n,
所以 A A A矩阵的列向量是一个非线性相关的向量组。而且 b ∈ s p a n ( A ) b\in span(A) bspan(A),
那就是说解是唯一。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值