卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等
图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等
视频演示和demo仓库地址找065期:
https://space.bilibili.com/124080712
效果图如下:
图片中的文本STOP和ARRET皆被识别出
代码所有文件:
运行01makeTxt.py会将data文件下的图片路径及标签保存在txt文本内,
运行02train.py会对图片进行读取并训练模型保存在runs文件下,
运行03detector_photo.py会对单张图片进行预测,
运行04pyqt界面.py可以展示一个pyqt的可视化交互界面,通过点击按钮加载感兴趣的图片进行识别。
欢迎下载