其实 AI Agent 这个词是从去年开始慢慢被大家关注,还记得去年比尔盖茨在他的个人博客上说过的那句话么?
他说:在接下来的几年里,Agent 将彻底改变我们的生活方式,无论是线上还是线下。
博客原文地址 👉 https://www.gatesnotes.com/AI-agents
1、什么是 AI Agent ?
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
我尝试用大白话跟大家盘清楚。
在互联网时代,我们基于 安卓、IOS、Windows 这些平台,可以构建很多软件应用 APP。
咱们手机里的这些 APP 都是互联网时代的产物,它可以满足我们的日常需求。
我可以用它来买东西,我可以用它来刷视频,我同样也可以用它来学习。每个 APP 都在一些特定场景下能帮助到我们。
那么在AI时代呢?我们经常听到的什么什么大模型,就好比互联网时代的平台。
但光有大模型也不行,为啥?因为大模型只是基础设施,没有为我们解决具体问题。
还得和互联网时代一样要有具体的应用,所以就产生出来了 AI Agent 的概念,Agent 也被说成是AI代理、AI机器人,其实也是类似的意思。
AI Agent 其实就是AI时代下的应用,一个 AI Agent 应用就好比你手机里面的一个 APP。这样说你应该能理解了吧?
2、AI Agent 对我们有什么用?
通过刚刚我们在上面的介绍,你应该多少有些概念了。那么我们接着展开说说,这玩意到底与我们有什么关系?
GPT 在回答通用型的问题是没问题的。在垂直、特定的领域,让AI Agent 做你的AI助理其实是可以比GPT更好的。
我们来列举几个场景
旅游线路推荐场景,AI Agent 你可以设置你的 Agent 调用邮箱、日历、微信、买票、酒店 API协助你,在一个 Agent 中完成所有的事情。
以前你完成这些事情需要在多个 App 之间来回切换,对比最优的方案,Agent 可以帮大大缩短流程和帮你提效,而且还是全自动的。
另外,比如说写代码,我们用 ChatGPT 写出来可能有几十行代码有 bug。
但我们用编程类的 Agent 去模拟人类的开发流程,这样就能减少 bug,更能符合我们的要求。
ChatDev 这种 Agent 目前就能做到。
比如,你是一家商业咨询公司,每天有大量的数据表格要处理,不仅要把数据库里面的原始数据做清洗,还要整理整理成表格,接着根据这个表格的数据做统计分析,最后得到一些商业洞察。
那么通用的 ChatGPT 是无法满足你的,最理想的方式是使用 AI 的能力,构建属于自己业务的代理机器人 Agent
把数据库连接到 Agent,输入你最终想要的洞察问题,过一会这个报告就出来了。甚至可以连接你的手机和邮箱,生成好了自动发送给你。
等等… AI Agent 能做的不仅仅只有这些,基本上覆盖到各行各业。
听起来很科幻,但已经是确定的未来了。可以说 Agent 是 AI 领域的下一个形态。它让AI仅仅说什么什么东西,进化到了帮你做什么什么事情。
3、AI Agent 是怎么工作的?
我们先看看人类是怎么工作的?一般都离不开 制定计划、执行计划、检查结果、优化改进。这一套流程不停地循环。当然这也被称为「PDCA循环工作方法原则」
结合上面的图片,可以更加清晰了解啥是 PDCA 工作法。
那么问题来了,我们前面说过,Agent 是 AI 领域的下一个形态,从教你做,变成帮你做。那具体是帮我们做的呢?
其实 Agent 代替人做事情,也是遵守我们上面提到的 PDCA 工作法原则的。
Planning 部分,Agent 会把大任务分解成它可管理可执行的小任务。
Tools 部分,Agent 会去执行任务,在模型知识不够的情况下,也会去主动调用外部 API 接口,例如说访问本地知识库信息、获取实时信息 等,都是在这个环节实现的。
Action 部分,会根据 Tools 部分执行后的结果,进行优化改进,这也是整个 Agent 最重要的环节。就好比我们人做完一件事情后,会反思迭代。
Memory 部分,大模型的上下文记忆是有限的,而 Agent 有效地解决了这个问题。每一次的执行 Agent 都会按照要求存储在 Memory 下,方便下次 Planning 部分制定计划时使用。
上面我们是基于一个 AI Agent 的原理拆解,多个 Agent 之间也是可以通讯的,就好比我们每个人在处理工作的时候,能协同办公一样。这个我们以后再具体展开讲。
大模型就像是 Agent 的大脑。Agent 可以根据人类制定的计划进行拆解和执行,并不停地循环把执行结果进行反馈和调优,最终达到制定的计划目标。
可以说,AI Agent 的出现就是为了模仿我们人类的工作模式,来提高生产效率的。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓