吹爆!!外网超火的吴恩达新书《如何构建自己的AI职业》

吴恩达(AndrewNG) ①AI行业概览:介绍人工智能领域的现状、发展趋势、主要应用领域(如机器学习、深度学习、自然语言处理、计算机视觉等)以及这些技术如何正在改变各行各业。 NG)最新力作《如何在AI领域构建你的职业生涯》(How to Build a Career in AI)仅40多页,却蕴含丰富洞见。这本小册子通俗易懂,深入探讨了AI职业发展的关键话题:核心技能培养、项目组合打造、人脉网络运用、面试技巧提升,以及如何与志同道合者建立长久联系。
在这里插入图片描述

这本指南适合谁?

渴望快速进入就业市场的学生,寻求职业转型的专业人士,希望构建终身成长网络的AI新手,以及立志为AI社区做出贡献的热心人士。无论你处于哪个阶段,这本书都能为你的AI职业之路提供宝贵指引。

这本书会涵盖以下几个方面来帮助读者规划和发展他们的人工智能职业生涯:

①AI行业概览: 介绍人工智能领域的现状、发展趋势、主要应用领域(如机器学习、深度学习、自然语言处理、计算机视觉等)以及这些技术如何正在改变各行各业。

②技能构建: 指导读者了解成为一名AI专业人士所需的关键技能,包括数学基础(如线性代数、概率论与统计学)、编程语言(如Python)、机器学习框架(如TensorFlow、PyTorch)以及如何通过在线课程、项目实践和研究来不断提升这些技能。

③职业路径规划: 探讨不同的职业角色,如数据分析师、机器学习工程师、AI研究员、AI产品经理等,以及每种角色的日常工作内容、所需技能和职业发展前景,帮助读者根据自己的兴趣和优势选择合适的职业道路。

④项目与实践经验: 强调实践的重要性,提供如何参与或发起AI项目、参加竞赛、开源贡献等方面的建议,以积累实战经验和展示个人能力。

⑤持续学习与网络建设: 分享如何跟进行业动态、参加研讨会和会议、加入专业社群和建立人脉网络,以保持知识的更新和扩大职业机会。

⑥道德与责任: 讨论AI伦理、数据隐私、算法偏见等问题,强调在AI开发和应用中应承担的社会责任和道德考量。

⑦求职策略: 提供简历撰写、面试准备、展示项目作品集等方面的建议,帮助读者成功进入AI行业

这本《如何构建自己的AI职业》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:如何构建自己的AI职业》免费分享(安全链接,放心点击)]👈

Table of Contents 1 Why Machine Learning Strategy 2 How to use this book to help your team 3 Prerequisites and Notation 4 Scale drives machine learning progress 5 Your development and test sets 6 Your dev and test sets should come from the same distribution 7 How large do the dev/test sets need to be? 8 Establish a single-number evaluation metric for your team to optimize 9 Optimizing and satisficing metrics 10 Having a dev set and metric speeds up iterations 11 When to change dev/test sets and metrics 12 Takeaways: Setting up development and test sets 13 Build your first system quickly, then iterate 14 Error analysis: Look at dev set examples to evaluate ideas 15 Evaluating multiple ideas in parallel during error analysis 16 Cleaning up mislabeled dev and test set examples 17 If you have a large dev set, split it into two subsets, only one of which you look at 18 How big should the Eyeball and Blackbox dev sets be? 19 Takeaways: Basic error analysis 20 Bias and Variance: The two big sources of error 21 Examples of Bias and Variance 22 Comparing to the optimal error rate 23 Addressing Bias and Variance 24 Bias vs. Variance tradeoff 25 Techniques for reducing avoidable bias Page 3 Machine Learning Yearning-Draft Andrew Ng26 Error analysis on the training set 27 Techniques for reducing variance 28 Diagnosing bias and variance: Learning curves 29 Plotting training error 30 Interpreting learning curves: High bias 31 Interpreting learning curves: Other cases 32 Plotting learning curves 33 Why we compare to human-level performance 34 How to define human-level performance 35 Surpassing human-level performance 36 When you should train and test on different distributions 37 How to decide whether to use all your data 38 How to decide whether to include inconsistent data 39 Weighting data 40 Generalizing from the training set to the dev set 41 Addressing Bias and Variance 42 Addressing data mismatch 43 Artificial data synthesis 44 The Optimization Verification test 45 General form of Optimization Verification test 46 Reinforcement learning example 47 The rise of end-to-end learning 48 More end-to-end learning examples 49 Pros and cons of end-to-end learning 50 Learned sub-components 51 Directly learning rich outputs Page 4 Machine Learning Yearning-Draft Andrew Ng52 Error Analysis by Parts 53 Beyond supervised learning: What’s next? 54 Building a superhero team - Get your teammates to read this 55 Big picture 56 Credits
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值