第二章统计学习

第一题.

For each of parts (a) through (d), indicate whether we would generally expect the performance of a fexible statistical learning method to be better or worse than an infexible method. Justify your answer. (a) The sample size n is extremely large, and the number of predictors p is small. (b) The number of predictors p is extremely large, and the number of observations n is small. (c) The relationship between the predictors and response is highly non-linear. (d) The variance of the error terms, i.e. σ2 = Var(" ), is extremely high.翻译并用中文回答

ChatGPT

对于 (a) 到 (d) 的每一部分,说明我们一般期望灵活的统计学习方法的性能是否比不灵活的方法更好或更差。并解释你的答案。

(a) 样本量 nnn 非常大,预测变量 ppp 数量少。

在这种情况下,灵活的统计学习方法通常会表现得更好。因为当样本量 nnn 很大时,我们有足够的数据来估计复杂模型的参数,从而减少过拟合的风险。少量的预测变量也使得模型不会变得过于复杂。

(b) 预测变量 ppp 的数量非常大,观察值的数量 nnn 很少。

在这种情况下,灵活的统计学习方法通常会表现得更差。因为当预测变量 ppp 很多而样本量 nnn 很少时,模型容易过拟合数据。灵活的方法会试图拟合训练数据中的每一个细节,导致在新数据上的泛化性能很差。

(c) 预测变量和响应变量之间的关系高度非线性。

在这种情况下,灵活的统计学习方法通常会表现得更好。因为灵活的方法能够捕捉到数据中复杂的非线性关系,而不灵活的方法(例如线性回归)可能无法很好地拟合这些非线性关系。

(d) 误差项的方差 σ2\sigma^2σ2 非常高。

在这种情况下,灵活的统计学习方法通常会表现得更差。因为高方差的误差项意味着数据中存在大量噪声,灵活的方法可能会过度拟合这些噪声,导致模型在新数据上的性能较差。相比之下,不灵活的方法可能会忽略一些噪声,提供更稳健的估计。

总结

  • (a) 灵活的方法更好,因为数据量大,预测变量少。
  • (b) 不灵活的方法更好,因为预测变量多,数据量少,避免过拟合。
  • (c) 灵活的方法更好,因为可以捕捉非线性关系。
  • (d) 不灵活的方法更好,因为高方差噪声会导致灵活方法过拟合。

通过以上分析,可以看出灵活和不灵活的方法在不同情况下的优劣。

什么是过拟合

ChatGPT

过拟合(Overfitting)是指在机器学习和统计模型中,模型过于复杂,以至于它在训练数据上表现非常好,但在新数据(测试数据)上表现很差的现象。换句话说,过拟合的模型很好地捕捉了训练数据中的细节和噪声,但这些细节和噪声并不代表数据的整体规律,因此在新数据上无法泛化。

过拟合的特征

  1. 训练误差很低:模型在训练数据上的误差很小,表明模型很好地拟合了训练数据。
  2. 测试误差很高:模型在测试数据上的误差很大,表明模型在新数据上的预测能力很差。
  3. 模型复杂度高:模型参数过多,或者使用了过于复杂的算法,以至于模型能够“记住”训练数据中的噪声。

过拟合的原因

  • 模型过于复杂:使用了太多的参数或者选择了过于灵活的模型(例如深度过大的神经网络或高次多项式回归)。
  • 训练数据量不足:样本量太小,模型无法捕捉到数据的真实规律,而是拟合了样本中的随机噪声。
  • 噪声过大:训练数据中包含大量噪声,模型试图去拟合这些噪声。

过拟合的解决方法

  1. 减少模型复杂度:选择较为简单的模型,减少模型参数的数量。
  2. 增加训练数据量:收集更多的数据,使模型能够更好地泛化。
  3. 正则化:在模型中加入正则化项(如L1、L2正则化),限制模型参数的大小,防止过度拟合。
  4. 交叉验证:使用交叉验证的方法选择模型参数和评估模型性能,从而选择最佳模型。
  5. 剪枝:在决策树等模型中,进行剪枝操作,去除多余的分支。

过拟合的示例

假设我们有一个简单的回归问题,数据点在一个二次函数附近波动。我们使用一个高次多项式(如10次多项式)来拟合数据。

  • 过拟合的情况:10次多项式能够完美地通过所有训练数据点,但它对新数据点的预测误差非常大。
  • 合理拟合的情况:一个二次多项式可能无法完美地通过所有训练数据点,但它能更好地捕捉数据的整体趋势,对新数据点的预测也更准确。

通过理解过拟合及其解决方法,可以更好地构建和选择模型,提高模型在新数据上的泛化能力。

4o

  1. Explain whether each scenario is a classifcation or regression problem, and indicate whether we are most interested in inference or prediction. Finally, provide n and p. (a) We collect a set of data on the top 500 frms in the US. For each frm we record proft, number of employees, industry and the CEO salary. We are interested in understanding which factors afect CEO salary. 2.4 Exercises 53 (b) We are considering launching a new product and wish to know whether it will be a success or a failure. We collect data on 20 similar products that were previously launched. For each product we have recorded whether it was a success or failure, price charged for the product, marketing budget, competition price, and ten other variables. (c) We are interested in predicting the % change in the USD/Euro exchange rate in relation to the weekly changes in the world stock markets. Hence we collect weekly data for all of 2012. For each week we record the % change in the USD/Euro, the % change in the US market, the % change in the British market, and the % change in the German market.翻译并回答

第二题

问题翻译与回答

对于以下每个场景,说明这是一个分类问题还是回归问题,并指出我们最感兴趣的是推理还是预测。最后,提供样本量 nnn 和预测变量数量 ppp。

(a) 我们收集了一组关于美国前500家公司的数据。对于每家公司,我们记录了利润、员工数量、行业和CEO薪酬。我们感兴趣的是哪些因素影响CEO薪酬。

  • 问题类型:回归问题
    • 解释:因为我们试图预测一个连续变量(CEO薪酬),这是一个回归问题。
  • 关注点:推理
    • 解释:我们感兴趣的是了解哪些因素(如利润、员工数量、行业)会影响CEO薪酬,因此我们关注的是因果关系和解释变量的影响。
  • 样本量 nnn:500(代表500家公司)
  • 预测变量数量 ppp:3(利润、员工数量、行业)

(b) 我们考虑推出一种新产品,希望知道它是否会成功或失败。我们收集了20个类似产品的数据,这些产品之前已推出。对于每种产品,我们记录了它是成功还是失败、产品定价、营销预算、竞争对手价格和其他十个变量。

  • 问题类型:分类问题
    • 解释:因为我们试图预测一个二分类变量(产品的成功或失败),这是一个分类问题。
  • 关注点:预测
    • 解释:我们希望预测新产品是否会成功或失败,因此关注的是模型的预测能力。
  • 样本量 nnn:20(代表20个产品)
  • 预测变量数量 ppp:13(产品定价、营销预算、竞争对手价格和其他十个变量)

(c) 我们对预测美元/欧元汇率的百分比变化与世界股市每周变化的关系感兴趣。因此,我们收集了2012年全年的每周数据。对于每周,我们记录了美元/欧元的百分比变化、美国市场的百分比变化、英国市场的百分比变化和德国市场的百分比变化。

  • 问题类型:回归问题
    • 解释:因为我们试图预测一个连续变量(美元/欧元汇率的百分比变化),这是一个回归问题。
  • 关注点:预测
    • 解释:我们希望预测未来美元/欧元汇率的变化,因此关注的是模型的预测能力。
  • 样本量 nnn:52(代表2012年的52周)
  • 预测变量数量 ppp:3(美国市场的百分比变化、英国市场的百分比变化和德国市场的百分比变化)

总结

  • (a) 回归问题,推理,n=500n = 500n=500,p=3p = 3p=3
  • (b) 分类问题,预测,n=20n = 20n=20,p=13p = 13p=13
  • (c) 回归问题,预测,n=52n = 52n=52,p=3p = 3p=3

第三题

4o

  1. We now revisit the bias-variance decomposition. (a) Provide a sketch of typical (squared) bias, variance, training error, test error, and Bayes (or irreducible) error curves, on a single plot, as we go from less fexible statistical learning methods towards more fexible approaches. The x-axis should represent the amount of fexibility in the method, and the y-axis should represent the values for each curve. There should be fve curves. Make sure to label each one. (b) Explain why each of the fve curves has the shape displayed in part (a).翻译并回答

问题翻译与回答

(a) 提供一个典型的(平方)偏差、方差、训练误差、测试误差和贝叶斯(或不可约)误差曲线的草图,绘制在同一张图上,从不灵活的统计学习方法到灵活的方法。x轴表示方法的灵活性,y轴表示每条曲线的值。应有五条曲线。请确保标记每条曲线。

(b) 解释为什么每条曲线有(a)部分显示的形状。

(a) 曲线草图

我们来绘制一个包含五条曲线的图,这些曲线分别表示偏差、方差、训练误差、测试误差和贝叶斯误差。x轴表示方法的灵活性,y轴表示每条曲线的值。

(b) 解释曲线的形状

  1. 训练误差曲线

    • 形状:单调递减。
    • 解释:随着模型变得更加灵活,它可以更好地拟合训练数据,因此训练误差会不断减少。
  2. 测试误差曲线

    • 形状:U型曲线。
    • 解释:在模型的灵活性较低时,模型无法很好地拟合数据,导致高偏差和高测试误差。随着灵活性的增加,模型更好地拟合数据,测试误差减少。然而,当模型过于灵活时,会发生过拟合,测试误差再次增加。
  3. 偏差(平方)曲线

    • 形状:单调递减。
    • 解释:偏差表示模型预测值与真实值之间的误差。随着模型灵活性的增加,模型能够更好地捕捉数据的模式,偏差减小。
  4. 方差曲线

    • 形状:单调递增。
    • 解释:方差表示模型对训练数据中随机噪声的敏感程度。随着模型变得更加灵活,它会开始拟合数据中的噪声,导致方差增加。
  5. 贝叶斯误差(不可约误差)曲线

    • 形状:水平线。
    • 解释:贝叶斯误差表示数据本身固有的噪声,与模型的灵活性无关,因此是一个常数。

通过这些曲线的形状和相互关系,我们可以理解模型的灵活性如何影响偏差和方差,从而影响训练误差和测试误差。这也帮助我们在选择模型时找到偏差和方差之间的平衡点,以最小化测试误差。

4o

  1. You will now think of some real-life applications for statistical learning. (a) Describe three real-life applications in which classifcation might be useful. Describe the response, as well as the predictors. Is the goal of each application inference or prediction? Explain your answer. (b) Describe three real-life applications in which regression might be useful. Describe the response, as well as the predictors. Is the goal of each application inference or prediction? Explain your answer. (c) Describe three real-life applications in which cluster analysis might be useful.翻译并回答

第四题

(a) 描述三个分类可能有用的实际应用。描述响应变量以及预测变量。每个应用的目标是推理还是预测?解释你的答案。

(b) 描述三个回归可能有用的实际应用。描述响应变量以及预测变量。每个应用的目标是推理还是预测?解释你的答案。

(c) 描述三个聚类分析可能有用的实际应用。


(a) 分类的实际应用

  1. 电子邮件垃圾过滤

    • 响应变量:电子邮件是否为垃圾邮件(是/否)。
    • 预测变量:电子邮件的特征,如发件人地址、邮件内容关键词、邮件长度、附件数量等。
    • 目标:预测。
      • 解释:我们希望预测新收到的邮件是否为垃圾邮件,从而进行自动分类。
  2. 医学诊断

    • 响应变量:是否患有某种疾病(是/否)。
    • 预测变量:患者的体检数据,如血压、血糖、体重、年龄、病史等。
    • 目标:预测。
      • 解释:我们希望根据患者的体检数据预测其是否患有某种疾病,从而帮助医生进行早期诊断。
  3. 信用卡欺诈检测

    • 响应变量:交易是否为欺诈交易(是/否)。
    • 预测变量:交易特征,如交易金额、交易时间、交易地点、商户类型等。
    • 目标:预测。
      • 解释:我们希望预测每一笔交易是否为欺诈交易,从而防止信用卡欺诈行为。

(b) 回归的实际应用

  1. 房地产价格预测

    • 响应变量:房屋价格(连续变量)。
    • 预测变量:房屋特征,如面积、卧室数量、浴室数量、地理位置、房龄等。
    • 目标:预测。
      • 解释:我们希望根据房屋的特征预测其市场价格,以便买卖双方参考。
  2. 销售预测

    • 响应变量:未来某段时间的销售额(连续变量)。
    • 预测变量:历史销售数据、市场营销支出、节假日影响、经济指标等。
    • 目标:预测。
      • 解释:我们希望预测未来的销售额,以便进行库存管理和市场策略调整。
  3. 气候变化研究

    • 响应变量:某地区的年平均气温(连续变量)。
    • 预测变量:年份、大气二氧化碳浓度、工业排放量、森林覆盖率等。
    • 目标:推理。
      • 解释:我们希望通过模型分析影响气温变化的因素,从而理解气候变化的机制和趋势。

(c) 聚类分析的实际应用

  1. 客户细分

    • 描述:将客户根据购买行为、消费习惯、人口统计特征等进行分组,以便进行个性化营销。
    • 应用:电子商务、零售行业。
  2. 图像分割

    • 描述:将图像中的像素分组,以便识别图像中的不同对象或区域。
    • 应用:医学图像分析、计算机视觉。
  3. 社交网络分析

    • 描述:在社交网络中识别具有相似行为或兴趣的用户群体,从而进行推荐或广告投放。
    • 应用:社交媒体平台、在线广告。

这些应用展示了分类、回归和聚类分析在实际生活中的广泛用途和重要性。通过合理应用这些统计学习方法,可以解决各种实际问题并作出有效决策。

第五题

  1. What are the advantages and disadvantages of a very fexible (versus a less fexible) approach for regression or classifcation? Under what circumstances might a more fexible approach be preferred to a less fexible approach? When might a less fexible approach be preferred?

灵活方法与不灵活方法的优缺点

优点和缺点

灵活方法(Flexible Approach)

优点

  1. 捕捉复杂关系:灵活的方法能够捕捉数据中复杂的非线性关系,适合处理复杂的模式和结构。
  2. 较低的偏差:因为模型能够很好地拟合训练数据,所以偏差较低。
  3. 更好的适应性:能够适应不同的数据分布和特征。

缺点

  1. 高方差:由于模型过于复杂,容易对训练数据中的噪声过拟合,导致在新数据上的泛化能力较差。
  2. 计算复杂度高:灵活的方法通常需要更多的计算资源,训练时间和预测时间较长。
  3. 解释性差:复杂模型难以解释,特别是在需要解释每个预测结果的场景中。

不灵活方法(Less Flexible Approach)

优点

  1. 低方差:不灵活的方法更不容易过拟合,泛化能力较强。
  2. 计算复杂度低:模型相对简单,计算资源消耗较少,训练和预测速度较快。
  3. 解释性强:简单模型更容易解释,便于理解和沟通。

缺点

  1. 高偏差:由于模型较为简单,可能无法捕捉数据中的复杂关系,导致拟合效果不佳。
  2. 局限性:在处理复杂模式时,可能无法提供准确的预测结果。

适用情况

灵活方法优先的情况

  1. 数据复杂:当数据中存在复杂的非线性关系时,灵活的方法可以更好地捕捉这些关系。
  2. 样本量大:当样本量足够大时,可以减少过拟合的风险,并充分利用灵活方法的优势。
  3. 预测准确性要求高:在某些应用中,如金融市场预测、图像识别等,高准确性是至关重要的,灵活方法可以提供更好的预测性能。

不灵活方法优先的情况

  1. 数据简单或线性:当数据关系较为简单或线性时,不灵活的方法已经足够应对,不需要复杂的模型。
  2. 样本量小:当样本量较小时,灵活的方法容易过拟合,不灵活的方法能够更好地泛化。
  3. 需要解释性:在医疗、法律等领域,模型的解释性非常重要,不灵活的方法更容易解释和信任。
  4. 计算资源有限:当计算资源有限或实时性要求高时,不灵活的方法可以提供更快的响应速度。

总结

在选择回归或分类方法时,需要根据具体的应用场景、数据特征和需求来权衡灵活方法和不灵活方法的优缺点。通过合理选择和应用,可以在复杂性和泛化能力之间找到最佳平衡点,从而实现最优的预测和解释效果。

4o

  1. Describe the diferences between a parametric and a non-parametric statistical learning approach. What are the advantages of a parametric approach to regression or classifcation (as opposed to a nonparametric approach)? What are its disadvantages?

参数方法与非参数方法的区别

参数方法(Parametric Methods)

定义

  • 参数方法假设数据遵循某种已知的分布形式,并通过有限数量的参数来描述这个分布。例如,线性回归假设响应变量与预测变量之间是线性关系,并通过回归系数来描述这个关系。

步骤

  1. 假设模型形式:例如,线性或多项式关系。
  2. 估计参数:使用训练数据来估计模型的参数。
  3. 预测:使用估计的参数对新数据进行预测。

优点

  1. 简化模型:由于假设了数据的分布形式,模型相对简单,容易理解和解释。
  2. 计算效率高:参数较少,计算和存储需求低,训练和预测速度快。
  3. 避免过拟合:由于模型形式简单,参数方法在小样本量情况下能够避免过拟合。

缺点

  1. 模型假设限制:如果数据不符合假设的分布形式,模型的拟合效果会很差。
  2. 灵活性差:无法很好地捕捉复杂的非线性关系。

非参数方法(Non-parametric Methods)

定义

  • 非参数方法不假设数据的分布形式,而是直接从数据中学习模型。这类方法通过无限制数量的参数来描述数据分布,例如,K近邻算法(K-Nearest Neighbors)和决策树(Decision Trees)。

步骤

  1. 不假设模型形式:不预设数据的分布形式。
  2. 直接从数据中学习:使用所有数据点来构建模型。
  3. 预测:基于训练数据对新数据进行预测。

优点

  1. 灵活性高:能够捕捉复杂的非线性关系,更好地拟合各种数据分布。
  2. 少量假设:不需要假设数据的分布形式,更加适应不同的数据类型和分布。

缺点

  1. 计算复杂度高:需要存储和处理大量数据,计算和存储需求高,训练和预测速度慢。
  2. 过拟合风险:容易对训练数据中的噪声进行过拟合,特别是在样本量较小时。

参数方法的优缺点

优点

  1. 简化和解释性:参数方法通常形式简单,易于解释和理解,特别适用于需要模型解释性的场景。
  2. 计算效率:由于参数数量少,参数方法计算效率高,适合大规模数据处理和实时预测。
  3. 数据需求低:在样本量较小时,参数方法能够提供稳定的性能,避免过拟合。

缺点

  1. 模型限制:模型假设限制了其应用范围,如果数据不符合假设,模型性能会显著下降。
  2. 灵活性不足:难以捕捉复杂的非线性关系,模型的泛化能力有限。

非参数方法的优缺点

优点

  1. 灵活性和适应性:能够处理各种数据分布和复杂的非线性关系,不受模型假设的限制。
  2. 高拟合能力:在大样本量情况下,能够更准确地拟合数据,提高预测精度。

缺点

  1. 计算复杂度:需要处理和存储大量数据,计算成本高,不适合实时应用。
  2. 过拟合风险:在样本量较小时,容易对训练数据中的噪声进行过拟合,泛化能力差。

总结

参数方法和非参数方法各有优缺点,选择时需要根据具体应用场景、数据特征和需求进行权衡。参数方法适合数据量较小、需要解释性的场景,而非参数方法适合数据量大、关系复杂的场景。合理选择方法可以在准确性、计算效率和模型解释性之间找到最佳平衡。

4o

  1. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable. Obs. X1 X2 X3 Y 1 030 Red 2 200 Red 3 013 Red 4 012 Green 5 −101 Green 6 111 Red Suppose we wish to use this data set to make a prediction for Y when X1 = X2 = X3 = 0 using K-nearest neighbors. (a) Compute the Euclidean distance between each observation and the test point, X1 = X2 = X3 = 0. (b) What is our prediction with K = 1? Why? (c) What is our prediction with K = 3? Why? (d) If the Bayes decision boundary in this problem is highly nonlinear, then would we expect the best value for K to be large or small? Why?

第六题

给定下表中的训练数据集,包括六个观测值、三个预测变量和一个定性响应变量。我们希望使用这个数据集在 X1=X2=X3=0X1 = X2 = X3 = 0X1=X2=X3=0 时对 YYY 进行预测,使用K近邻算法。

Obs.X1X2X3Y
1030Red
2200Red
3013Red
4012Green
5-101Green
6111Red

假设我们希望使用K近邻算法在 X1=X2=X3=0X1 = X2 = X3 = 0X1=X2=X3=0 时对 YYY 进行预测。

(a) 计算每个观测值与测试点 X1=X2=X3=0X1 = X2 = X3 = 0X1=X2=X3=0 之间的欧氏距离。

欧氏距离公式为:

d=(X11−X12)2+(X21−X22)2+(X31−X32)2d = \sqrt{(X1_1 - X1_2)^2 + (X2_1 - X2_2)^2 + (X3_1 - X3_2)^2}d=(X11​−X12​)2+(X21​−X22​)2+(X31​−X32​)2​

计算每个观测值与测试点 (0,0,0)(0, 0, 0)(0,0,0) 的距离:

  1. 观测值 1: d=(0−0)2+(3−0)2+(0−0)2=0+9+0=3d = \sqrt{(0-0)^2 + (3-0)^2 + (0-0)^2} = \sqrt{0 + 9 + 0} = 3d=(0−0)2+(3−0)2+(0−0)2​=0+9+0​=3
  2. 观测值 2: d=(2−0)2+(0−0)2+(0−0)2=4+0+0=2d = \sqrt{(2-0)^2 + (0-0)^2 + (0-0)^2} = \sqrt{4 + 0 + 0} = 2d=(2−0)2+(0−0)2+(0−0)2​=4+0+0​=2
  3. 观测值 3: d=(0−0)2+(1−0)2+(3−0)2=0+1+9=10≈3.16d = \sqrt{(0-0)^2 + (1-0)^2 + (3-0)^2} = \sqrt{0 + 1 + 9} = \sqrt{10} \approx 3.16d=(0−0)2+(1−0)2+(3−0)2​=0+1+9​=10​≈3.16
  4. 观测值 4: d=(0−0)2+(1−0)2+(2−0)2=0+1+4=5≈2.24d = \sqrt{(0-0)^2 + (1-0)^2 + (2-0)^2} = \sqrt{0 + 1 + 4} = \sqrt{5} \approx 2.24d=(0−0)2+(1−0)2+(2−0)2​=0+1+4​=5​≈2.24
  5. 观测值 5: d=(−1−0)2+(0−0)2+(1−0)2=1+0+1=2≈1.41d = \sqrt{(-1-0)^2 + (0-0)^2 + (1-0)^2} = \sqrt{1 + 0 + 1} = \sqrt{2} \approx 1.41d=(−1−0)2+(0−0)2+(1−0)2​=1+0+1​=2​≈1.41
  6. 观测值 6: d=(1−0)2+(1−0)2+(1−0)2=1+1+1=3≈1.73d = \sqrt{(1-0)^2 + (1-0)^2 + (1-0)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \approx 1.73d=(1−0)2+(1−0)2+(1−0)2​=1+1+1​=3​≈1.73

(b) 当 K=1K=1K=1 时我们的预测是什么?为什么?

当 K=1K=1K=1 时,我们选择离测试点最近的一个邻居。最近的观测值是观测值 5(距离为 2\sqrt{2}2​)。

  • 观测值 5 的 YYY 值是 Green。

因此,当 K=1K=1K=1 时,我们的预测是 Green。

(c) 当 K=3K=3K=3 时我们的预测是什么?为什么?

当 K=3K=3K=3 时,我们选择离测试点最近的三个邻居。最近的三个观测值是:

  1. 观测值 5(距离为 2\sqrt{2}2​,Green)
  2. 观测值 6(距离为 3\sqrt{3}3​,Red)
  3. 观测值 2(距离为 2,Red)

这三个邻居中有两个 Red,一个 Green。

因此,当 K=3K=3K=3 时,我们的预测是 Red。

(d) 如果这个问题的贝叶斯决策边界是高度非线性的,那么我们期望最好的 KKK 值是大还是小?为什么?

如果贝叶斯决策边界是高度非线性的,我们期望最好的 KKK 值是较小的。这是因为小的 KKK 值使模型更加灵活,能够更好地捕捉数据中的复杂非线性关系。如果 KKK 值过大,模型会变得过于平滑,可能无法捕捉到这些非线性关系,从而导致预测性能下降。因此,在高度非线性的情况下,较小的 KKK 值通常更优。

  • 29
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值