FPGA图像处理-直方图均衡化

本文详细介绍了直方图均衡化在图像处理中的作用,以及如何在FPGA上使用双端口RAM进行直方图统计和均衡化过程的Verilog代码实现,特别关注了读写冲突导致的统计误差。结果显示了处理前后图像对比度的提升和直方图变化。
摘要由CSDN通过智能技术生成

直方图统计原理

百度百科中关于直方图均衡化的描述:
图像处理领域中利用图像直方图对对比度进行调整的方法。 对比度是画面黑与白的比值,也就是从黑到白的渐变层次。比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。对比度对视觉效果的影响非常关键,一般来说对比度越大,图像越清晰醒目,色彩也越鲜明艳丽;而对比度小,则会让整个画面都灰蒙蒙的。
直方图均衡化分为真均衡化和伪均衡化,由于FPGA不方便实现真均衡化,所以采用伪均衡化,即前一帧的图像进行统计、帧间隙进行累计和与归一化、当前帧做归一化后的映射输出。不过仿真的话,前一帧和当前帧是同一张图片,就是真均衡化。
下图是咸鱼fpga博客中直方图均衡化的波形图:
在这里插入图片描述
本人按照上图的思路实现,没有ram2的清零,因为ram2写入会覆盖旧数据。
直方图均衡化步骤:

  1. 第一帧统计直方图存入ram1
  2. 帧间隙读出ram1中数据进行计算,将计算结果存入ram2,同时对ram1进行清零
  3. 第二帧根据映射表进行输出

直方图统计

为了建立直方图,在FPGA中可以用256个计数器对每个灰度进行计数,不过这样做代码代码量太大,使用的资源也很多,不太现实。
像素是一个个来的,因此任何时钟周期都只有一个计数器在增加,意味着累加器可以在存储器中实现,首先需要读取相关存储单元,然后加一再写回,这需要用到双端口ram,一个读端口一个写端口。不过需要注意,因为读出数据需要一拍,图中灰度I需要打一拍再送入写入端口的地址端。
在这里插入图片描述
这种做法会有误差,因为ram在读写冲突时读出的是旧数据,所以当连续相同像素到来时,会出现统计丢失,不过对结果影响很小,视觉上难以辨别。本人水平有限,无法解决这个问题。

直方图均衡化

直方图均衡化公式:
在这里插入图片描述
H(i)为第 i 级灰度的像素个数,A0为图像的面积(即分辨率),Dmax为灰度最大值,即255。
帧间隙时,设计一个计数器,从0计数到255,将ram1中的数据读出来,同时对ram1进行清零。读出的数据会通过流水线计算,得出直方图均衡化后的灰度级映射,再写入ram2。第一级进行累加,第二级乘以255,第三级除以分辨率。
第二帧只需读出ram2中的数据进行映射输出即可得到直方图均衡化后的图像。

verilog代码

module histgram_equ(
    input           clk,
    input           rst_n,
    
    // input
    input           pre_vsync,
    input           pre_href,
    input           pre_clken,
    input   [7:0]   pre_img_Y,

    // output
    output  reg     post_vsync,
    output  reg     post_href,
    output  reg     post_clken,
    output  [7:0]   post_img_Y
);
//----------------------信号声明--------------------------
    // ram1读地址总线
    wire    [7:0]   rd_addr_bus;
    // ram1读数据
    wire    [31:0]  rd_data;
    // ram1写使能总线
    wire            wren_bus;
    // ram1写地址总线
    wire    [7:0]   wr_addr_bus;
    // ram1写数据总线
    wire    [31:0]  wr_data_bus;
    // 输入灰度打一拍
    reg [7:0
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值