医学案例|Cochran‘s Q检验

一、案例介绍

当前有一名医生拟评价药物A对50名高血压患者的降压效果。在患者服用药物A后的第3天、第5天和第7天时分别进行记录。该医生想知道服用药物A的高血压患者血压是否一直在好转。血压好转赋值为1,血压没变化赋值为0,。部分数据如下:

二、问题分析

比较三组或多组二分类变量平均值是否存在显著差异,可以使用Cochran’s Q检验进行分析。Cochran’s Q检验可以理解为多组配对卡方检验,但是使用Cochran’s Q检验进行分析,需要考虑以下4个前提条件。

条件1:观察值为二分类变量,只能取0,1两个值。

条件2:分组变量包含3个及以上分类,且各组之间相关。

条件3:样本为随机样本。

条件4:样本的大小应该足够大,以便获得可靠的结果。

本案例中观察值为血压是否好转,满足条件1;分组变量为3个时间节点,且各组之间相关,满足条件2;样本为在医院高血压患者中随机选择的50名患者,满足条件3;样本量足够大,满足条件4。所以可以使用Cochran’s Q检验进行分析。

三、软件操作及结果解读

(1)软件操作

将数据上传至SPSSAU系统,在实验/医学研究模块,选择【Cochran’s Q检验】,将3个时间点测量结果放入右侧“分析项”分析框中,点击“开始分析”,操作如下图:

(2)结果解读

①Cochran's Q检验结果

SPSSAU输出Cochran’s Q检验分析结果如下图:

Cochran's Q检验原假设为各组变量之间无差异。从检验结果可以看出,Cochran's Q检验对应p值为0.002小于0.05,说明拒绝原假设,各组变量之间差异具有统计学意义。具体差异可对比频数分析结果。

②频数分析结果

SPSSAU输出频数分析结果如下:

从频数分析结果可以看出,第3天血压好转人数占比为30%,第5天和第7天好转人数占比分别为48%和66%。说明血压好转人数在不断上升。也可以通过柱状图进行直观对比,如下图:

四、结论

本案例使用Cochran's Q检验对药物A的降血压效果进行分析。在服用药物A后的第3天、第5天、第7天时,患者血压好转的比例分别为30%,48%和66%。使用Cochran's Q检验对3个时间点的血压好转状态进行分析,得到3个时间点血压好转比例的差异具有统计学意义(Cochran's Q=12.4615,p=0.002)。所以可以认为服用药物A进行降压的患者血压是一直在好转的。

五、知识小贴士

数据格式说明:

Cochran's Q检验需要特别注意数据格式。例如1个评委为一列,1个被评价者为1行数据。若10个评委对于4个选手打分,最终需要将10列标题数据放入SPSSAU进行分析。同时Cochran's Q检验研究的数据一定只能是数字0和1,通常情况下0代表不满意/不认可/不同意/不选择,1代表满意/认可/同意/选择。

一. 课程介绍本课程结合Python进行统计数据分析的原理讲解与实战,涵盖了大部分统计&数据分析模型,特别是当前比较主流的算法:参数估计、假设检验、线性回归、广义线性回归、Lasso、岭回归、广义可加模型、回归样条等;机器学习经常用到的主成分分析、因子分析、典型相关分析、聚类分析等;各种非参数统计模型,包括非参数统计推断、尺度推断、位置推断、非参数核密度估计、非参数回归等。本课程主要针对有一定Python编程基础、即将毕业参加工作的的大三大四学生,或者已经参加工作需要提升自己数据分析能力以及转行从事IT行业尤其是数据&大数据分析工作的初入职场者,或者正在攻读硕博士学位需要学习和掌握量化研究方法的研究生。本课程对于即将从事机器学习、深度学习&人工智能相关工作的程序员也有很大帮助,有利于打好坚实的理论基础。二. 课程目录第0章 课程导学第1章 数据描述性分析1.1 描述统计量1.2 数据的分布1.3 概率分布函数的图形1.4 直方图、经验分布函数与QQ图1.5 多元数据的数据特征与相关性分析1.6 多元数据的基本图形表示第2章 参数估计2.1 点估计2.2 区间估计第3章 假设检验3.1 基本原理3.2 参数检验第4章 回归分析4.1 回归分析的概念与一元线性回归4.2 多元线性回归及统计量解析4.3 逐步回归与模型选择4.4 回归诊断4.5 广义线性回归4.6 非线性回归第5章 方差分析5.1 单因素方差分析5.2 双因素方差分析第6章 判别分析与聚类分析6.1 判别分析6.2 聚类分析第7章 主成分分析、因子分析与典型相关分析7.1 主成分分析7.2 因子分析7.3 典型相关分析第8章 非参数统计8.1 经验分布和分布探索8.2 单样本非参数统计推断8.3 两独立样本的位置与尺度判断8.4 多组数据位置推断8.5 分类数据的关联分析8.6 秩相关与分位数回归8.7 非参数密度估计8.8 一元非参数回归三. 讲师简介主讲人李进华博士,本、硕、博皆就读于武汉大学信息管理学院,2005年获博士学位进入211高校任教,2012年受聘为教授。从事信息管理与数据分析方面的教学、科研与系统开发工作20余年,具备深厚理论修养和丰富实战经验。是中国最早从事Java开发的程序员和Oracle数据库的DBA之一。曾带领团队开发《葛洲坝集团三峡工程指挥中心三期工程施工管理系统》、《湖北省财政厅国有企事业单位资产管理系统》等大型MIS。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值