科研论文 | 影响关系研究44种回归模型汇总,SPSSAU软件全部轻松完成

本文介绍了实证分析44种回归模型及其适用场景,重点总结了应该如何选择常用的回归模型,包括多元线性回归、逐步回归、岭回归、logistic回归等,以及介绍如何利用SPSSAU这一软件轻松完成回归分析。

一、40+回归模型汇总

通过回归模型,我们可以深入分析自变量X与因变量Y之间的关系,回归分析可以揭示自变量X对Y的整体影响,还能细致地评估每个自变量X对Y的具体影响程度,从而为决策提供更准确的依据。

目前在SPSSAU系统中,回归模型包含以下40多种,一句话描述及说明如下:

那么面对如此多的回归模型,第一次进行实证分析研究影响关系的同学们应该如何选择呢?

二、回归模型选择

实证分析影响关系研究时,回归模型的选择通常需要结合自变量X和因变量Y的数据类型以及个数进行确定,虽然上文列出了40多种回归模型,但其实日常研究中最常用的回归模型其实就那么几个,接下来以常用回归模型选择为例进行说明。
科研论文常用回归模型初步选择方法如下:

1Y为定量数据(仅1个)

  • 多元线性回归

当因变量Y为定量数据且只有1个时,一般多元线性回归比较常用。多元线性回归是当前使用最为成熟,研究最多的回归分析方法之一。

线性回归模型有很多需要满足的前提条件(如线性、独立性、正态性、方差齐、无多重共线性),如果不满足这些假定或者条件可能会导致模型使用出错,那么此时就有对应的其它回归模型出来解决这些问题,因而跟着线性回归后面又出来很多其他回归分析方法。

关于多元线性回归模型可查看下方文章:

深度解析 | 多元线性回归模型(超详细适用条件检验、软件操作及结果解读)

  • 逐步回归

分析X对Y的影响关系时,X可以为多个,但并非所有X均会对Y产生影响;当X个数很多时,可以让系统自动识别出有影响的X,这一自动识别分析方法则称为逐步回归分析,具体可分为逐步法、向前法、向后法。

  • 岭回归

岭回归是一种正则化的线性回归方法,特别适用于处理多重共线性问题。它通过在损失函数中添加一个L2惩罚项(即回归系数的平方和乘以一个常数)来减少共线性对参数估计的影响,从而提高模型的稳定性,但可能会牺牲一些模型的解释力。

  • lasso回归

岭回归是使用L2正则化,Lasso回归是使用L1正则化。相对来讲,岭回归用于解决共线性问题的时候较多,Lasso回归除了有解决共线性问题的功能外,其还可用于进行‘特征筛选’,即找出有意义的自变量X,一般在机器学习领域使用此功能较多。

  • Robust回归

是一种对异常值和模型误设定不那么敏感的回归方法。它使用不同的损失函数来减少异常值对回归系数估计的影响,使得模型更加健壮,适用于数据中存在较多异常值的情况

  • 分层回归/分组回归

分层回归用于处理数据存在层次结构的情况,考虑不同层次的效应。分组回归则是根据某些特征将数据分组,并在每组中进行回归分析。

  • 曲线回归/非线性回归

曲线回归或非线性回归用于建模因变量和自变量之间的非线性关系。这种方法通过使用多项式函数、指数函数、对数函数等非线性函数来更好地拟合数据,从而提供更准确的预测和解释。

  • 面板模型

用于分析时间序列数据和横截面数据的组合,考虑时间和个体效应。适用于研究变量随时间变化的影响。

2Y为定量数据(多个)

一般回归模型只包括一个因变量Y,如果研究存在多个因变量Y,可以根据研究选择PLS回归、路径分析或者结构方程模型。

  • PLS回归

PLS回归(偏最小二乘回归),是一种可以解决共线性问题、多个因变量Y同时分析、以及处理小样本时影响关系研究的一种多元统计方法。从原理上,PLS回归集合三种研究方法,分别是多元线性回归、典型相关分析和主成分分析,PLS回归是此三种方法的集合运用,多元线性回归用于研究影响关系,典型相关分析用于研究多个X和多个Y之间的关系,主成分分析用于对多个X或者多个Y进行信息浓缩。
 

  • 路径分析

路径分析在于研究模型影响关系,用于对模型假设进行验证。
 

  • 结构方程模型(SEM)

可用于研究多个潜变量之间的影响关系情况。结构方程模型共包括两部分结构,分别是测量关系和影响关系。

3Y为定类数据

当因变量Y为定类数据时,logistic回归模型比较常用。

  • 二元logistic回归

因变量为二分类变量时,比如“买&不买”、“阳性&阴性”,选择二元logistic回归分析。还有两种方法,二元probit回归、条件logistic回归,也可针对二分类变量进行回归分析。
 

  • 多分类logistic回归

因变量为多分类变量时,比如村长候选人“甲、乙、丙”,选择多分类logistic回归分析。
 

  • 有序logistic回归

因变量为多分类变量且有序时,比如“不满意、一般、满意”,选择有序logistic回归分析。
上面提到的这些方法都是在实际科学研究、论文实证分析中使用频率非常高的回归模型,可以满足绝大多数分析使用。

三、其他应用场景分类

上文已经对Y为定量数据、Y为定类数据时一些常用的模型进行了说明。下面对其余的三类应用场景——问卷研究、医学研究、空间计量研究常用回归模型进行介绍。

1、问卷研究

通过量表问卷收集的数据,常用的回归模型有调节作用、中介作用、调节中介、路径分析、结构方程模型,它们不是严格意义上的回归模型,但是本质也是研究影响关系的模型。

  • 调节作用

调节作用是研究X对Y的影响时,是否会受到调节变量Z的干扰;比如开车速度(X)会对车祸可能性(Y)产生影响,这种影响关系受到是否喝酒(Z)的干扰,即喝酒时的影响幅度,与不喝酒时的影响幅度 是否有着明显的不一样。

中介作用是研究X对Y的影响时,是否会先通过中介变量M,再去影响Y;即是否有X->M->Y这样的关系;比如工作满意度(X)会影响到创新氛围(M),再影响最终工作绩效(Y)。

调节中介作用同时考虑中介变量和调节作用,其核心是中介作用,基于中介作用基础上再进一步讨论调节作用。比如X->M->Y这条中介路径存在,即说明具有中介作用。接着在进一步分析条件中介作用,即在另外一个调节变量Z取不同水平时(通常分为3个水平,低水平,平均水平,高水平),中介作用的幅度(也称条件间接效应)情况如何。

研究模型影响关系,用于对模型假设进行验证。比如下图的模型框架:希望研究工作条件,人际关系对于公司满意度的影响;同时还希望研究公司满意度和机会感知对于离职倾向的影响,路径有一共有4条(即4对影响关系)。

结构方程模型SEM是一种多元数据分析方法,其可用于研究多个潜变量之间的影响关系情况。结构方程模型共包括两部分结构,分别是测量关系和影响关系(路径分析只有影响关系)。

2、医学研究

医学领域常用的回归模型有Cox回归、条件logit回归、Deming回归、Possion回归、负二项回归等。

是一种用于生存分析的统计方法,主要用于研究不同因素对生存时间的影响。它不需要对生存时间的分布做任何假设,能够处理右删失数据,并提供每个自变量对生存风险的影响大小。Cox回归广泛应用于医学研究,用于评估治疗方案或其他因素对患者生存时间的影响。

是一种用于配对或匹配数据的logistic回归模型,特别适用于流行病学和临床研究。它通过考虑配对或匹配的特性,可以有效地控制混杂因素的干扰,从而准确估计暴露因素与结局之间的关联。这种方法常用于病例-对照研究,通过匹配病例与对照来减少偏差。

是一种特殊的线性回归方法,适用于自变量和因变量都存在测量误差的情况。与传统的OLS回归不同,Deming回归考虑了自变量和因变量的误差方差比,常用于比较不同测量方法的准确性或一致性。它在医学、化学、生物学等领域广泛应用于方法比较研究。

是一种用于计数数据的回归分析方法,假设因变量服从Poisson分布。它主要用于研究某一事件在单位时间或单位空间内发生的次数与自变量之间的关系。Poisson回归广泛应用于事故频率、疾病发病率等领域。

针对Possion回归来讲,如果计数资料不适合Poisson分布时,尤其是数据过离散时,此时使用负二项回归分析更合适
 

3、空间计量研究

空间计量研究主要涉及的回归模型有:空间ols回归、空间滞后SLM、空间误差SEM、空间滞后误差SAC、空间杜宾SDM、空间杜宾误差SDEM、自变量空间滞后SLX、空间面板模型、似不相关回归SUR。
空间计量研究入门教程可以查看下面这篇文章:

空间计量小白教程 | 空间概念、权重矩阵、空间计量模型、软件操作等

四、SPSSAU回归模型软件操作

以常用的二元logit回归模型为例,介绍如何使用SPSSAU软件快速完成模型构建与分析。

(1)SPSSAU软件操作

①上传数据至SPSSAU系统,在分析页面左侧选择分析方法【二元logit回归】;

②拖拽数据至右侧对应分析框中;

③点击开始分析按钮,即可得到分析结果,操作如下图:

(2)二元logit回归分析结果及解读

SPSSAU输出二元logit回归分析结果如下:

二元logistic回归分析结果解读可以参考SPSSAU表格下方的分析建议与智能分析:

今天的内容就分享到这里,大家还想看什么欢迎留言~

### 如何在SPSSAU中执行Logit回归分析 为了在SPSSAU中进行Logit回归分析,需遵循特定的操作流程来设置和运行模型。 #### 数据准备 确保数据已上传至SPSSAU系统并整理好。对于Logit回归,因变量应为二分类变量(0或1),而自变量可以是连续型或类别型变量[^1]。 #### 操作步骤说明 进入【通用方法】模块下的【Logistic回归】选项卡: - 将因变量拖放到“Y项(被解释变量)”框内; - 把想要考察影响因素的各个自变量依次放入对应的“X项(解释变量)”区域;如果存在控制变量,则同样放置于该处; - 对于有分层需求的情况,可指定某些变量作为层次结构的一部分加入到模型之中; - 设置完毕后点击下方蓝色按钮提交计算请求即可得到结果报告页面显示最终输出表格以及统计检验指标等内容供进一步解读与应用。 ```python # Python伪代码示意如何构建类似的逻辑框架而非实际用于SPSSAU平台操作 def logistic_regression_analysis(dependent_variable, independent_variables): # 假设已经完成数据加载过程... model = LogisticRegression() X = pd.DataFrame(independent_variables) y = dependent_variable fitted_model = model.fit(X,y) return fitted_model.summary() logistic_regression_analysis(y=[...], X=[[age],[gender]]) # 示例调用方式 ``` 注意上述Python代码仅为概念展示,并不适用于直接在SPSSAU平台上实施具体任务时使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值