本文发表于2023年Information Fusion期刊,总体框架图如下:
摘要:
多模态时间序列异常检测对于维持工作设备的安全性和稳定性非常重要,他的数据经常由来自各种模态的多元时间序列构成。尽管最近的深度学习方法在异常检测已展示出了巨大的潜能,但他们没有显式地捕获不同模态间单元时序的时空关系,导致更多的假阴性和假阳性。本文中,提出一个多模态时空图注意力网络MST-GAT来解决此问题。MST-GAT先使用一个多模态图注意力网络M-GAT和一个时域卷积网络以捕获多模态时序的时空关系。具体地,M-GAT使用了一个多头注意力模块和两个相关注意力模型(即,intra- and inter-modal attention,模块内和模块间注意力)显式地建模模态关系。进一步,MST-GAT同时优化了重建和预测模块。在4个多模态benchmarks上的结果展示出MST-GAT比其他SOTA算法更好。相关分析也证明MST-GAT通过定位最异常的单变量时序,增强了检测的异常的可解释性。
1. Introduction
介绍多模态时序异常检测任务:异常检测已经在其他领域(图像,时间序列)中获得了很多关注,其旨在找到与其他观测显著偏离的实例。本文关注于多