[TS2]MST-GAT: A Multimodal Spatial-Temporal Graph Attention Network for TS Anomaly Detection

本文发表于2023年Information Fusion期刊,总体框架图如下:


摘要

多模态时间序列异常检测对于维持工作设备的安全性和稳定性非常重要,他的数据经常由来自各种模态的多元时间序列构成。尽管最近的深度学习方法在异常检测已展示出了巨大的潜能,但他们没有显式地捕获不同模态间单元时序的时空关系,导致更多的假阴性和假阳性。本文中,提出一个多模态时空图注意力网络MST-GAT来解决此问题。MST-GAT先使用一个多模态图注意力网络M-GAT和一个时域卷积网络以捕获多模态时序的时空关系。具体地,M-GAT使用了一个多头注意力模块和两个相关注意力模型(即,intra- and inter-modal attention,模块内和模块间注意力)显式地建模模态关系。进一步,MST-GAT同时优化了重建和预测模块。在4个多模态benchmarks上的结果展示出MST-GAT比其他SOTA算法更好。相关分析也证明MST-GAT通过定位最异常的单变量时序,增强了检测的异常的可解释性。

1. Introduction

       介绍多模态时序异常检测任务:异常检测已经在其他领域(图像,时间序列)中获得了很多关注,其旨在找到与其他观测显著偏离的实例。本文关注于多元时序(MTS)异常检测,其是异常检测的一个子任务。MTS异常检测常用于检测工作设备和信息技术系统中传感器的不同模态(温度、速度和功率),每个传感器的数据被视为单元时间序列。多模态时序数据可以方便地检测复杂的异常,这在独立检测每个模态时并不明显。进一步,在系统被部分/完全打乱之前,及时发现异常可以帮助用于排除故障。

        说明多模态时序异常检测任务的难点(多元时序相互关联+包含复杂空间依赖性):通常,有经验的工程师会手动为每个被监视的时间序列创建静态阈值来执行异常检测。然而,随着近些年数据规模呈指数型增长,这种手动的方式将会是labor-intensive的。进一步,决定每个传感器得最优阈值是非常有挑战性的,特别是这个系统中使用了多模态传感器。许多异常检测方法就被提出解决以上的问题,他们结合所有单元时序的异常检测结果以检测异常。但是,多模态时序的系统经常涉及大量相互连接的单变量时序,这些传感器数据通常以复杂的非线性方法进行关联,从而不断产生多模态时间序列数据。因此,一个单一的单元时序无法反映系统的整体状态,简单地将多个单元序列的检测结果结合往往表现不佳。由于复杂空间依赖性(拓扑结构和模态关联),MTS异常检测是非常有挑战性的。此外,多模态时序不仅包含了来自相同模态时序的关系intra-modal correlations,还有不同模态间时序的关系inter-modal correlations。

        此前方法无法捕获多模态关系:之前对应MTS异常检测的方法将时间依赖进行考虑,包括SVM、贝叶斯方法、ARIMA、RNN等。这些方法捕获时间维度的动态变化但忽略了不同时序的空间依赖。为了弥补这一缺陷,一些研究者引用CNN更好的建模空间关系。然而,CNN通常被用于有规律的数据如图像、视频和音频,由于多模态时序的复杂拓扑关系会导致图数据中CNN的效果差。GNN对于构建图数据的复杂拓扑关系更有效,他能用于异常检测并实现不错的结果。具体地,Hang使用GNN和GRU学习时序的时空关系。尽管先前的方法已经取得了不错的进展,但他们不能显式地捕获多模态关系。

        以往基于重建的方法提供异常解释但在一些场景表现不好:另一个挑战是为异常检测结果提供解释。 为了向用户提供更有价值的信息,MST-GAT 通过定位最有可能导致该异常的单变量时间序列来解释每个异常。 基于重建的方法的重建概率通常用于解释检测到的异常。 例如,OmniAnomaly利用变分自动编码器 (VAE)为每个时间序列生成重建概率,用于解释检测到的异常。 尽管这些方法可以捕获整个时间序列的随机性,但研究表明它们在周期性场景上表现不佳,而基于预测的方法可以克服这一缺陷。

        本文,提出了多模态时空图注意力网络(multimodal spatial-temporal graph attention network),名为MST-GAT,应用图注意力网络GATs去显式地捕获多模态时序的模态依赖性。进一步,设计了多模态图注意力网络M-GAT,M-GAT由一个多头注意力模块2个相关注意力模块构成(模态内注意力和模态间注意力)以捕获多模态时序之间的空间依赖关系。在多元时序中显式建模不同的关系有助于获得输入数据更好的特征表达。然后,引入了一个时域卷积网络,通过对time slices进行标准的卷积操作来捕获每个时序中的时域依赖关系。接下来,联合优化了一个重建模块和预测模块以集成他们的优势。重建模块负责重建输入数据,预测模块旨在预测下一个timestamp的特征。进一步,重建概率和预测误差被用于解释检测到的异常。

        本文贡献:

  1. 提出MST-GAT,一个新的基于图注意力网络的MTS异常检测方法。开创性地探索了在多模态时间序列数据中显式地建模时空依赖关系以进行异常检测。
  2. 联合优化基于VAE的重建模块和基于MLP的预测模块以继承他们的优势。MST-GAT实现了最高的F1,AUC。
  3. 基于重建和预测结果,设计了一种高效的MTS异常检测的解释方法。MTS-GAT有良好的可解释性,能够获得与人类直觉相一致的结果。

2. Related Works

2.1 时序异常检测

2.2 图神经网络

2.3 多模态机器学习

3. Methodology

3.1 问题定义

无监督任务

3.2 MST-GAT总览

如下图所示,MST-GAT由4大部分组成:

3.3 Graph Structure Learning

本质上:将每个单元时序看作图中的一个节点,计算步骤如下:

  1. 计算每个节点的时序嵌入v_i,嵌入维度是d
  2. 计算互相两对节点嵌入的余弦相似度e_ij
  3. 选择e_ij中前K个最大的值,认为这两对节点间存在边,即Aij=1,反之亦然。

具体的公式表达如下图:

3.4 M-GAT in Spatial Dimension

3.5 Convolution in Temporal Dimension

3.6 Joint Optimization and Anomaly Score

4. Experiments

数据集:

来自航天器的:Mars Science Laboratory rover (MSL),Soil Moisture Active Passive satellite (SMAP),异常由NASA的专家标注。

来自水处理试验台:Secure Water Treatment (SWaT)

来自减量配水试验台:Water Distribution (WADI)

数据样例如下:

对比算法:

PCA, AE, DAGMM, LSTM-VAE,MAD-GAN, OmniAnomaly, USAD, and GDN

结果比较:

  • 19
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 最小生成树的独特性在于,它是连接所有节点的最小权重的树形结构。这意味着,对于给定的图,最小生成树是唯一的,因为它是基于图中边的权重和拓扑结构的。如果有两个不同的最小生成树,那么它们的权重和拓扑结构必须是相同的,否则它们就不是最小生成树。因此,最小生成树的独特性是由图的特性所决定的。 ### 回答2: 最小生成树(MST)是一个有权无向图中的一种最小权重生成树。在图中只存在一个MST集,这就是MST的唯一性。MST的唯一性是由两个基本性质决定的:割定理和权重不相等原则。 割定理:一条边e是图G的一组定理的一部分,当且仅当e在图的任意MST中是轻边。根据割定理,我们可以证明一个图的MST集合中包含着一组定理,这个定理可以将图划分成两块(S, V-S),其中S是V的子集,也就是说,将图分成了一个项集S和一个项集V-S。而出现在子集Hi和Hj中的边,一定不会同时出现在MST中。因为这会导致环的出现,并使得生成树的权值不是最小。 权重不相等原则:如果两条边的权重不相等,一条较轻的边拥有优先权。在图的MST中,比较轻的边先被选中,而重边则被放弃。因此,生成的树具有唯一性,它不受选择顺序的影响。 总之,MST的唯一性可通过两个基本性质来解释。MST的唯一性对于很多算法问题来说都是非常重要的,因为它确保了结果的正确性和可重复性。例如,在电信网络普及的时代,MST常被用来寻找通信网络中的最优路径,因为可以通过生成树来解决这个问题。 ### 回答3: 最小生成树是一种表示连接无向带权图中所有顶点的最小边集的算法。它的想法是选择连接这些节点的最小权重边而不形成环。 在一个图形中,可能存在多个不同的生成树。这是由于生成树只是图形中可能的许多树之一。但是最小生成树具有独特性,这意味着一个给定图形的任何两个最小生成树都将包含相同数量的边,具有相同的总权重和相同的结构。 证明最小生成树的唯一性可以通过矛盾法来证明。设存在两个不同的最小生成树,可以假设它们之间存在一组边不同的点组合。我们选择这些边可以作为一组割边从一个树中删除,并添加到另一个树中去。这样得到的新图仍然要求连接所有的节点,但是总权重不会因此改变。根据割边的定义,新图中的每一组割边必须包含一条链接树之间的边。因此,我们可以在原来的树和新的树之间找到一条边,它只出现在一个树中,不会出现在另一个树中。这条边可以用来创建一个环,进而将此环内的所有边从新树中进行剪切。这样就得到了一棵比原来的树更小的,但仍然是最小生成树,这与前提相矛盾。因此我们可以得出最小生成树的唯一性。 最小生成树的唯一性是它的一个重要性质,它让我们不用担心算法的输出结果可能不止一个。它也为一些具有证明要求的应用提供了支持,例如在网络设计和路由算法中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值