3D Segmentation with Exponential LogarithmicLoss for Highly Unbalanced Object Sizes-MICCAI2018【论文理解】

MICCAI 2018的论文
在这里插入图片描述

前言

深度学习的迅速发展,使得在医疗影像分割上也有很多深度学习模型。但是论文提出,大部分的网络只能处理数量较少的类别(<10),并且在3D影像分割中,很难处理小目标,解决数据极度不均衡的问题。本论文提出了新的3D网络网络结构和新的loss function。这个loss function是收到了focal loss的启发,称为指数对数损失函数(Exponential Logarithmic loss),可以通过不同标签的样本数量的相对大小,以及他们的分割难度来平衡各个标签。论文使用20个标签的脑分割图像,达到了DICE 82%,其中最大最小标签之间的大小比例是0.14%。训练不需要100个epoch便可以达到这个精度。
区域大小和Dice分数之间的相关性:
在使用DICE loss时,对小目标是十分不利的,因为小目标一旦有部分像素预测错误,那么就会导致DICE大幅度的下降。
先看一下GDL(the generalized Dice loss),公式如下(标签数量为2):
G D L = 1 − 2 ∑ l = 1 2 w l ∑ n r l n p l n ∑ l = 1 2 w l ∑ n r l n + p l n GDL = 1 - 2\frac{\sum_{l=1}^{2}w_l\sum_nr_{ln}p_{ln}}{\sum_{l=1}^{2}w_l\sum_nr_{ln} + p_{ln}} GDL=12l=12wlnrln+plnl=12wlnrlnpln
其中 r l n r_{ln} rln为类别l在第n个像素的标准值(GT),而 p l n p_{ln} pln为相应的预测概率值。此处最关键的是 w l w_l wl,为每个类别的权重。其中 w l = 1 ( ∑ n = 1 N r l n ) 2 w_l = \frac{1}{(\sum_{n=1}^{N}r_{ln})^2} wl=(n=1Nrln)21,直观的感觉就是将得到的DICE值除以每个label的所有的真值,说白了就是进行了均衡化的操作,将大物体和小物体放到同一水平上再进行对比。
打个比方吧,一立方米棉花和一立方分米的铁,分别切掉相同大小的东西,要比较对那个物体的影响最大,质量丢失的最多。如果直接比较切下来的部分那么:
切 下 的 棉 花 &lt; &lt; 切 下 的 铁 切下的棉花 &lt;&lt; 切下的铁 <<
这对棉花不公平,那么改进为:
切 下 的 棉 花 所 有 的 棉 花 与 切 下 的 铁 所 有 的 铁 \frac{切下的棉花} {所有的棉花} 与 \frac{切下的铁} {所有的铁}
相比较,归一化到同一水平下,就可以同时兼顾大物体和小物体。
但是此篇论文觉得而且这种情况跟不同标签之间的相对尺寸无关,但是可以通过标签频率来进行平衡。
值得实验探究~~~

Exponential Logarithmic loss

结合了focal loss以及Dice loss。此loss的公式如下:
L E X P = w d i c e ∗ L D i c e + w C r o s s ∗ L C r o s s L_{EXP} = w_{dice}*L_{Dice} + w_{Cross}*L_{Cross} LEXP=wdiceLDice+wCrossLCross,此时新增添了两个参数权重分别是 w D i c e w_{Dice} wDice w C r o s s w_{Cross} wCross,而 L D i c e L_{Dice} LDice为 指数log Dice损失(the exponential logarithmic Dice loss), L C r o s s L_{Cross} LCross为指数交叉熵损失。
L D i c e = E [ ( − l n ( D i c e i ) ) γ D i c e ] L_{Dice} = E[(-ln({Dice}_i))^{\gamma_{Dice}}] LDice=E[(ln(Dicei))γDice],其中 D i c e i = 2 ( ∑ x δ i l ( x ) p i ( x ) ) + ϵ ( ∑ x δ i l ( x ) + p i ( x ) ) + ϵ Dice_i = \frac{2(\sum_x\delta_{il}(x)p_i(x)) + \epsilon}{(\sum_x\delta_{il}(x) + p_i(x) ) + \epsilon} Dicei=(xδil(x)+pi(x))+ϵ(xδil(x)pi(x))+ϵ L C r o s s = E [ w l ( − l n ( p l ( x ) ) ) r C r o s s ] L_{Cross} = E[w_l(-ln(p_l(x)))^{r_{Cross}}] LCross=E[wl(ln(pl(x)))rCross],x为体素的位置,i为label,l为在位置x的ground-truth。 p i ( x ) p_i(x) pi(x)为softmax之后的概率值。其中 w l = ( ∑ k f k f l ) 0.5 w_l = (\frac{\sum_kf_k}{f_l})^{0.5} wl=(flkfk)0.5 f k f_k fk为标签k的出现频率,这个参数可以减小出现频率较高的类别权重。 γ D i c e \gamma^{Dice} γDice γ C r o s s \gamma^{Cross} γCross,提升非线性的作用,如下图显示的是不同的指数log非线性表现:
在这里插入图片描述

收敛快,计算效率高的网络结构(结合skip connections和deep supervision)

在这里插入图片描述

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值