R-CNN介绍
R-CNN是一种目标检测的常用算法,该算法使用选择性搜索从给定图像中提取出一系列区域,然后检查这些区域是否包含对象。我们首先提取这些区域,对于每个区域,CNN都被用来提取特定的特征。最后,这些特性用于检测对象。不幸的是,R-CNN变得相当慢,因为这个过程涉及到多个步骤。
另一方面,Fast R-CNN将整个图像传递给ConvNet,产生感兴趣的区域(而不是从图像中提取区域)。此外,它也不使用三种不同的模型(正如我们在R-CNN中看到的那样),而是使用单一模型从区域中提取特征,将它们分类为不同的类,并返回边界框。所有这些步骤都是同时完成的,因此与R-CNN相比,它的执行速度更快。然而,快速的R-CNN在应用于大型数据集时速度不够快,因为它还使用选择性搜索来提取区域。
快速的R-CNN通过替换区域建议网络(RPN)来解决选择性搜索的问题。我们首先使用ConvNet从输入图像中提取feature map,然后将这些映射通过RPN传递,RPN返回对象建议。最后对这些映射进行分类,并对边界框进行预测。