使用快速R-CNN算法进行目标检测实例(附Python代码)

本文介绍了快速R-CNN算法的工作原理,对比了与R-CNN的区别,并提供了一个用于血细胞检测的实例。通过使用ConvNet和区域建议网络(RPN)提高效率,解决了R-CNN的选区问题。文章还涵盖了数据集分析、模型训练与测试的过程,以及在实际应用中的价值。
摘要由CSDN通过智能技术生成

R-CNN介绍

R-CNN是一种目标检测的常用算法,该算法使用选择性搜索从给定图像中提取出一系列区域,然后检查这些区域是否包含对象。我们首先提取这些区域,对于每个区域,CNN都被用来提取特定的特征。最后,这些特性用于检测对象。不幸的是,R-CNN变得相当慢,因为这个过程涉及到多个步骤。

另一方面,Fast R-CNN将整个图像传递给ConvNet,产生感兴趣的区域(而不是从图像中提取区域)。此外,它也不使用三种不同的模型(正如我们在R-CNN中看到的那样),而是使用单一模型从区域中提取特征,将它们分类为不同的类,并返回边界框。所有这些步骤都是同时完成的,因此与R-CNN相比,它的执行速度更快。然而,快速的R-CNN在应用于大型数据集时速度不够快,因为它还使用选择性搜索来提取区域。

快速的R-CNN通过替换区域建议网络(RPN)来解决选择性搜索的问题。我们首先使用ConvNet从输入图像中提取feature map,然后将这些映射通过RPN传递,RPN返回对象建议。最后对这些映射进行分类,并对边界框进行预测。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值