2023年Python学习清单

本文作者分享了自己在CSDN上三百多篇Python博客的学习总结,涵盖了Python入门、科学计算、并发编程、标准库模块的使用、算法实现及一些炫酷的绘图应用,特别强调了Numpy和Pandas在数据处理中的重要性,以及多线程和混合编程的实践。

不知不觉已经在CSDN写了三百多篇博客,这些博客中,Python相关的内容占了绝大多数,而这些与Python有关的内容中,绝大多数又都是我个人学习的总结,本文希望把我的Python学习过程做一个总结,也希望能够帮助不同阶段的Pythoner。

入门

首先,对于尚未入门的朋友,这里准备了两篇,这两篇博客都是往年的1024程序员日时写的,也都得到了CSDN的鼓励,希望可以帮助初学者,找到学习Python的入门路径。

在初步入门之后,需要对一些最基础的Python模块有一个认识,比如对字符串、文件读写以及常见文件类型的处理方案:

python号称函数式语言,而下面的模块则是助力Python成为函数式语言的三大神器,其中运算符函数化可以提供括号风格的书写格式;functools可以加速Python的龟速循环与递归;itertools可以避免迭代对象对内存的大量占用。

科学计算

在入门之后,就应该迅速累积代码量了,这里建议从数学模块开始。Python标准库中的数学模块有六个:Python内置的6个数学模块,但对于真正想做科学计算的朋友来说,那还是要学习Numpy的:Numpy专栏,而以下四篇博客是不可不学的:

除了Numpy之外,对Pandas的逻辑也可稍加涉猎:Pandas绘图函数总结

并发与混合编程

一般来说,并发与混合编程更多解决的是效率问题,而非功能问题。而当一个程序员对效率产生需求的时候,说明他已经真正是一个程序员了,而对多线程和多进程的友好支持,挽救了Python的速度,如相对多线程的机理和使用方法有一个了解,这篇博客不可不看: Python多线程详解

由于多进程和多线程的语法过于雷同,所以并没有总结,而只针对多进程通信的部分内容做了说明。

此外,这篇用了cuda之后速度起飞,尽管主要目的是介绍显卡计算,但测试了多线程和多进程的对比,值得一看。

如果想进一步提高Python的速度,可以利用Python的胶水语言的特色,通过Python和C的混合编程,达到开发速度和运行速度的双赢,走上人生巅峰

标准库模块

Python标准库中封装了大量值得一看的模块,
os模块复现了操作系统的部分功能,提供了包括路径操作、进程管理等一些列功能。其中的os.path针对不同操作系统的文件组织方式,提供了相同的API,实现了跨平台

字符串最核心的问题就是格式化与搜索,前者的功能由字符串本身实现,后者则需通过强大的正则表达式。pprint针对字典、列表优化了输出方案,textwrap解决了针对段落文本的格式化问题。

与日期时间相关的模块,实际上提供的也是一种转换功能,即如何将一串时间戳转换为可读的数字,或者更进一步,转换为可读性更强的字符串。本文整理了如下三个与日期时间相关的模块,其中time模块相对来说使用更频繁一些,除了获取系统时间之外,还提供了sleep这种暂停线程的系统功能。

算法

Python最多的一个应用场景就是算法原理的开发和验证,我也通过Python实现了一些比较热门的算法,并且希望在2023年继续总结,争取完成:用Python实现100种智能算法,目前已经实现的算法有:

此外,对sklearn库的聚类算法也做了一点总结

以及scipy中封装的一些优化算法:

炫酷的应用

这些年也写了一些绘图相关的博客,这些内容虽然没有解决什么痛点问题,但对Python的理解以及编程水平的提高是有所帮助的,比如

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值