将图片制作成PCB板钥匙扣(结界兽篇)

记得冬奥会的时候,“冰墩墩”大火,全网一墩难求,当时就用电路板加工了一批冰墩墩,送给了同事及朋友。当时没有记录制作过程,现在《哪吒2》票房突飞猛进,一路高涨,里面结界兽无论是谁都能硬抗3秒,于是又萌生了做结界兽钥匙扣的想法,现把过程记录下分享给大家。
在这里插入图片描述

1.准备工作

(1)一张结界兽照片
(2)美图秀秀软件
(3)立创EDA(专业版)或AD22画板软件

在这里插入图片描述

2.图片预处理

用美图秀秀将图片背景颜色改为白色,并将两个结界兽分开,搞成2张图片
在这里插入图片描述
在这里插入图片描述

3.图片单色处理

即将彩色图片变成单色黑白图片,可采用电脑系统自带的画图,编辑,另存为单色位图
在这里插入图片描述
单色位图保存完成后,更改图片后缀为JPG格式,得到两张黑白图片
在这里插入图片描述

在这里插入图片描述

4.PCB图绘制

以立创EDA软件为例

4.1新建工程,新建PCB

在这里插入图片描述

4.2导入图片

在这里插入图片描述
选择相应的图片,自己适当调整图示中相关参数,点击确认;
在这里插入图片描述
这样一个结界兽就放置在了绘图区域;
在这里插入图片描述

4.3绘制板框

将图片制作成PCB板最占工作量的地方就是绘制板框,就是加工成PCB的形状,我们只需要沿着图片画一圈板框线就行。建议用折线和三点圆弧这两种,直线部分用折线画,其余部分用三点圆弧画。
在这里插入图片描述
将右侧设置在板框层
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最终画出板框
在这里插入图片描述

4.4重新反相导入图片作为阻焊层,铺铜皮

板框画好之后,刚才导入的图片就可以删掉了,因为想要加工出来,和结界兽原有色彩一致,即绿色+金色,将PCB板加工成绿色阻焊,需要为金色的部分直接铺铜裸露;将原来的图片反相导入,并作为组焊层,即可实现绿色,顶层及底层全部铺铜即可实现裸露为金色
在这里插入图片描述
导入后选中,放置在顶层组焊层,并调整大小放置在板框内;
在这里插入图片描述
在顶层放置一个矩形,进行铺铜;
在这里插入图片描述
板子底层阻焊和底层铜皮进行同样的操作;

4.5 放置过孔作为钥匙扣孔

在自己想要的位置放置一个过孔作为钥匙扣孔,孔内外直径可设置为120mil,孔径约3mm。
在这里插入图片描述
在这里插入图片描述

4.6 3D显示查看

在这里插入图片描述

在这里插入图片描述
可以进行旋转查看操作。

4.7 导出gerber加工文件

在这里插入图片描述
gerber文件导出后就可以送到板厂加工了。

AD22软件从资料上看是可以支持图片导入的,步骤应该差不多,大家可以自行验证。

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值