传输线(二)

本文详细探讨了传输线的两种工作状态——行波(无反射)和驻波,包括其特点如无反射波、阻抗匹配、传输效率和相位变化。文章还分析了短路和开路终端条件下电压波形、相位差以及输入阻抗的等效电路模型。
摘要由CSDN通过智能技术生成

一 传输线的基本特征

表达式:

V(z)=Ae^{-\gamma z}+Be^{\gamma z}=V_{i}(z)+V_{r}(z)

I(z)=\frac{1}{Z_{0}}(Ae^{-\gamma z}-Be^{\gamma z}) =I_{i}-I_{r}

Z_{0}=\frac{V_{i}}{I_{i}}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{R+j\omega L}{G+j\omega C}}

纯阻态:     Z_{0}=\sqrt{\frac{L}{C}}

二.均匀无耗传输线工作状态分析

2.1 行波工作状态(无反射)

  V(z)=\frac{V_{r}+I_{r}Z_{0}}{2}e^{j\beta z}+\frac{V_{r}-I_{r}Z_{0}}{2}e^{-j\beta z}

I(z)=\frac{V_{r}+I_{r}Z_{0}}{2Z_{0}}e^{j\beta z}-\frac{V_{r}-I_{r}Z_{0}}{2Z_{0}}e^{-j\beta z}

   \because e^{-\gamma z}=0 \Rightarrow                           传输线无限长

    V_{r}-I_{r}Z_{0}=0        Z_{l}=\frac{V_{r}}{I_{r}}=Z_{0}         负载阻抗匹配

\therefore V(z)=\frac{V_{r}+I_{r}Z_{0}}{2}e^{-j\beta z}=V_{r}^{+}e^{-j\beta z}=\left | V_{2}^{+} \right |e^{j(\varphi _{0}-\beta z)}

     I(z)=\frac{V_{r}+I_{r}Z_{0}}{2Z_{0}}e^{-j\beta z}=I_{r}^{+}e^{-j\beta z}=\left | I_{2}^{+} \right |e^{j(\varphi _{0}-\beta z)}

特点:   无反射波    \tau = 0

              传输线上任意点阻抗等于特征阻抗Z0

             传输效率高,入射波能量全部被负载吸收;

             无损耗线,沿线电压和电流的振幅不变

             沿线的电压与电流的相位(\varphi _{0}-\beta z)的规律变化

            V(z,t)= \left | V_{i} \right |cos(\omega t+\varphi -\beta z)

    2.2 驻波工作状态

    2.2.1     Z(L) = 0, 终端短路 \tau _{2}=\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}}=-1

            V(z) = V_{i}(z)+V_{r}(z)=V_{i}(z)(1+\tau (z))

             I(z) = I_{i}(z)+I_{r}(z)=I_{i}(z)(1-\tau (z))

        当z = 0时,      V_{i}(0)=-V_{r}(0)=V_{i}

                                 I_{r}(0)=I_{r}(0)=\frac{1}{2}I_{r}

                                  即  I_{r}=2I_{i}

                                 Z_{0}=\frac{V_{r}}{I_{r}}

对于无损线

V(z)=\frac{V_{r}+I_{r}Z_{0}}{2}e^{j\beta z}+\frac{V_{r}-I_{r}Z_{0}}{2}e^{-j\beta z}

I(z)=\frac{V_{r}+I_{r}Z_{0}}{2Z_{0}}e^{j\beta z}-\frac{V_{r}-I_{r}Z_{0}}{2Z_{0}}e^{-j\beta z}

V(z)=j2V_{r}^{+}sin\beta z

I(z)=\frac{2V_{r}^{+}}{Z_{0}}cos\beta z

V_{2}^{+}=\left | V_{2}^{+} \right |e^{j\varphi _{2}}     I_{2}^{+}=\left | I_{2}^{+} \right |e^{j\varphi }

V(z,t)=2\left | V_{2}^{+} \right |sin(\beta z)cos(\omega t+\varphi +\frac{\pi }{2})

i(z,t)=2\frac{\left | V_{2}^{+} \right |}{Z_{0}}cos(\beta z)cos(\omega t+\varphi )

讨论:

1)电压波节点

\beta z=n\pi \Rightarrow z=\frac{n}{2} \lambda   n=0,1,2...

    电压波腹点

\beta z=\frac{2n+1}{2}\pi \Rightarrow z=\frac{2n+1}{4} \lambda  n=0,1,2...

2)电压与电流的相位差为\frac{\pi }{2}

3)Zin为纯电抗

\because    V(z)=j2V_{r}^{+}sin\beta z

        I(z)=\frac{2V_{r}^{+}}{Z_{0}}cos\beta z

\thereforeZ_{in}=\frac{V(z)}{I(z)}=jZ_{0}tan\beta z

当  z=\frac{n}{2} \lambda        时,n=0,1,2,...Z_{in}=0                      相当于串联谐振

当  0<z<\frac{\lambda }{4}   时,                   Z_{in}为感抗                    等效于一电感

当    z=\frac{n}{4} \lambda      时,n=0,1,2...    Z_{in}=\infty                    相当于并联谐振

当   \frac{\lambda }{4}<z<\frac{\lambda }{2}  时,                   Z_{in}为容抗                     等效于一电容

2.2.2  终端开路

Z_{l} = \infty 时, \tau _{2}=\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}}=1

V_{2}=V_{2}^{+}(0)+V_{2}^{-}(0)=V_{2}^{+}[1+1]

0=I_{2}^{+}(0)+I_{2}^{-}(0)=I_{2}^{+}[1-1]

V_{2}^{+}(0)=V_{2}^{-}(0)

I_{2}^{+}(0)=-I_{2}^{-}(0)   

\Rightarrow V_{2}=2V_{2}^{+}

     V_{2}^{+}=I_{2}^{+}Z_{0}

V(z^{'})=\frac{V_{2}+I_{2}Z_{0}}{2}e^{j\beta z^{'}}+\frac{V_{2}-I_{2}Z_{0}}{2}e^{-j\beta z^{'}}

I(z^{'})=\frac{V_{2}+I_{2}Z_{0}}{2Z_{0}}e^{j\beta z^{'}}-\frac{V_{2}-I_{2}Z_{0}}{2Z_{0}}e^{-j\beta z^{'}}

V(z^{'})=2V_{2}^{+}cos\beta z^{'}

I(z^{'})=j\frac{2V_{2}^{+}}{Z_{0}}sin\beta z^{'}

\Rightarrow Z(in)=-jZ_{0}cot\beta z^{'}

讨论:

1)电压波节

cos\beta z=0                     

 \beta z=\frac{2n+1}{2}\pi   z=\frac{2n+1}{4}\lambda          n=0,1,2...

2)电压波腹:

\left |cos\beta z \right |=1  

\beta z=\frac{2n+1}{2}\pi

z=\frac{n}{2}\lambda        n=0,1,2...

 3) .终端接纯电抗负载   

       Z_{l}=\pm jX_{l}时,\left | \tau \right |=\left |\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}} \right |=1, 其电压电流及输入阻抗的关系 式都可以由短路线或开          路线锯掉或延长长度L得到。

小结:1.短路线与开路线的电压波节与波腹点距离终端位置错开\lambda /4;即将短路线锯掉

              \lambda /4可得开路线的电压电流分布;反之,将开路线锯掉\lambda /4,也可得短路线的电压                          电流分布

           2.电压与电流相位差为 \pi /2,空间上也相差\pi /2;且波节点(电压电流)均为0,无能量传                 输\left |\tau \right | =1,全反射,  此时为纯驻波

            3.Zin的等效电路可同样由短路线锯掉\lambda /4可得;

            4 沿线各点的阻抗为纯电抗,每过 \lambda /4,阻抗性质改变一次;每过\lambda /2,阻抗性质重复一                      次

  2.3 行驻波工作状态

      当Z_{l}=R_{l}\pm jX_{l}时,\tau_{2}=\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}} =\left | \tau_{2} \right |e^{\pm j\varphi _{2}}    \tau _{2}< 1 

V(z)=V_{2}^{+}e^{j\beta z}[1+\left | \tau _{2} \right |e^{j(\varphi _{2}-2\beta z)}]

I(z)=I_{2}^{+}e^{j\beta z}[1-\left | \tau _{2} \right |e^{j(\varphi _{2}-2\beta z)}]

纯驻波的最小值为0,行驻波的最小值大于0.

2.3.1当cos(2\beta z-\varphi )=1 ,行驻波出现电压波腹和电流波节(谷)

\left |V_{max} \right |=\left | V_{2}^{+} \right |[1+\left | \tau _{2} \right |]

\left |I_{min} \right |=\left | I_{2}^{+} \right |[1-\left | \tau _{2} \right |]

Z_{in}=\frac{V(z)}{I(z)}=Z_{0}\rho   输入阻抗为纯电阻

2.3.2当cos(2\beta z-\varphi )=-1 ,行驻波出现电压波节(谷)和电流波腹

\left |V_{min} \right |=\left | V_{2}^{+} \right |[1-\left | \tau _{2} \right |]

\left |I_{max} \right |=\left | I_{2}^{+} \right |[1+\left | \tau _{2} \right |]

Z_{in}=\frac{V(z)}{I(z)}=\frac{Z_{0}}{\rho}   输入阻抗为纯电阻

2.3.3任意位置的输入阻抗:

Z_{in}(z)=Z_{0}\frac{Z_{l}+jZ_{0}tan\beta z}{Z_{0}+jZ_{l}tan\beta z}

cos(2\beta z-\varphi )=1 时,电压波腹

2\beta z-\varphi =2n\pi \Rightarrow Z_{max}^{'}=\frac{\lambda }{4\pi }\varphi +n\frac{\lambda }{2}   n=0,1,2...

cos(2\beta z-\varphi )=-1 时    电压波节

2\beta z-\varphi =(2n+1)\pi \Rightarrow Z_{max}^{'}=\frac{\lambda }{4\pi }\varphi +(2n+1)\frac{\lambda }{4}    n=0,1,2...

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值