因为样本个数和特征维度的是不相等de,所以组成的矩阵不是方阵。
第一种方式:特征分解思路(特征值分解要求分解的矩阵是方阵)
基于样本特征维度,先求协方差矩阵---->再特征分解(因为协方差矩阵是方阵,所以可以使用特征分解的思路)
第二种方式:SVD分解(SVD分解不要求矩阵是方阵)
SVD理论:https://blog.csdn.net/m0_37957160/article/details/107082668
任何矩阵都可以进行SVD分解。
事实上在数据量很大时,求协方差矩阵,然后在进行特征分解是一个很慢的过程,因此在PCA背后的实现也是借助奇异值分解</