PCA(2):PCA算法实现的两种方式

本文介绍了PCA的两种实现方式:通过特征分解思路处理方阵协方差矩阵,以及使用SVD分解应对非方阵情况。强调了在大数据量下,PCA常借助SVD提高效率。并提供了SVD的理论链接及Numpy实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为样本个数特征维度的是不相等de,所以组成的矩阵不是方阵。

第一种方式:特征分解思路(特征值分解要求分解的矩阵是方阵)

基于样本特征维度,先求协方差矩阵---->再特征分解(因为协方差矩阵是方阵,所以可以使用特征分解的思路)

第二种方式:SVD分解(SVD分解不要求矩阵是方阵)

SVD理论:https://blog.csdn.net/m0_37957160/article/details/107082668

任何矩阵都可以进行SVD分解。

事实上在数据量很大时,求协方差矩阵,然后在进行特征分解是一个很慢的过程,因此在PCA背后的实现也是借助奇异值分解</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Upupup6

写手不易请留下你的打赏鼓励谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值