数字图像处理:(1)图像梯度以及算子应用

本文介绍了图像梯度的概念,从数学意义、灰度梯度和图像梯度三个方面展开,阐述了图像梯度在图像处理中的作用,特别是如何通过梯度增强图像清晰度。同时,提到了经典图像梯度算法如Sobel、Roberts和Laplace算子,以及卷积操作在计算图像梯度中的应用。
摘要由CSDN通过智能技术生成

1、数学意义上的梯度

在理解图像梯度是什么的时候,我们首先要回忆一下以前学习过得梯度是什么?

见链接:

https://blog.csdn.net/m0_37957160/article/details/113678344

一句话梯度是一个向量,梯度向量就像一个指路明灯一样,他永远指向方向导数变化最大的那个方向,那么我的这个梯度模的大小就等于方向导数最大的那个大小。

在数学上,梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)

2、灰度梯度

百科解读灰度梯度:

把图像看成二维离散函数,灰度梯度其实就是这个二维离散函数的求导,用差分代替微分(由于数字图像是离散的二维图像,故用差分代替微分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Upupup6

写手不易请留下你的打赏鼓励谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值