1、数学意义上的梯度
在理解图像梯度是什么的时候,我们首先要回忆一下以前学习过得梯度是什么?
见链接:
https://blog.csdn.net/m0_37957160/article/details/113678344
一句话梯度是一个向量,梯度向量就像一个指路明灯一样,他永远指向方向导数变化最大的那个方向,那么我的这个梯度模的大小就等于方向导数最大的那个大小。
在数学上,梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)
2、灰度梯度
百科解读灰度梯度:
把图像看成二维离散函数,灰度梯度其实就是这个二维离散函数的求导,用差分代替微分(由于数字图像是离散的二维图像,故用差分代替微分