方向导数、偏导数、偏导函数、全导数、梯度

本文介绍了多元函数的导数概念,包括偏导数、方向导数和梯度。偏导数是函数沿坐标轴方向的变化率,如二元函数的两个偏导数。方向导数则反映了函数在任意方向上的变化率。梯度是一个包含所有偏导数的向量,指向函数增长最快的方向。文中强调了偏导数是方向导数的特殊情况,并阐述了计算方向导数和梯度的方法。最后,讨论了梯度向量的重要性,它指示了最大方向导数的方向。
摘要由CSDN通过智能技术生成

概念

偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。

偏导函数:是一个函数;是一个关于点的偏导数的函数。

方向导数:是一个数;反映的是f(x,y)在P_{0}点沿方向v的变化率。

梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。

0、导数:几何意义:当函数定义域和取值都在实数域中的时候,导数可以表示函数曲线上的切线斜率。 除了切线的斜率,导数还表示函数在该点的变化率

直白的来说,导数代表了在自变量变化趋于无穷小的时候,函数值的变化与自变量变化的比值代表了导数,几何意义有该点的切线。物理意义有该时刻的(瞬时)

1. 使用Python 绘制二元函数的图像: 首先需要安装matplotlib库,然后使用以下代码进行绘图: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) # 定义二元函数 Z = X**2 + Y**2 # 绘制图像 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() ``` 2. 求多元函数偏导数偏导数表示函数在某个变量上的变化率,而其他变量保持不变。对于多元函数,可以对每个变量分别求偏导数。 例如,对于函数 $f(x,y)=x^2+y^2$,可以求出它在 $x$ 和 $y$ 上的偏导数: $\frac{\partial f}{\partial x} = 2x$ $\frac{\partial f}{\partial y} = 2y$ 3. 求多元函数的高阶偏导数: 高阶偏导数表示函数在某个变量上的变化率的变化率,可以通过对偏导数再次求导得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以求出它的二阶偏导数: $\frac{\partial^2 f}{\partial x^2} = 2$ $\frac{\partial^2 f}{\partial y^2} = 2$ $\frac{\partial^2 f}{\partial x\partial y} = 0$ 4. 求多元函数微分: 微分表示函数在某个点上的变化量,可以通过对每个变量的偏导数求和得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以求出它在点 $(1,2)$ 处的微分: $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ $= 2x dx + 2y dy$ $= 2(1) dx + 2(2) dy$ $= 2dx + 4dy$ 5. 求隐函数偏导数: 隐函数是一个多元函数,其中一个变量可以表示为其他变量的函数,例如 $x^2+y^2=1$ 可以表示为 $y=\sqrt{1-x^2}$。 对于这样的隐函数,可以使用隐函数求导法求出它的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$ 其中 $f(x,y)=x^2+y^2-1$,代入得: $\frac{\partial y}{\partial x} = -\frac{2x}{2y} = -\frac{x}{y}$ 6. 求隐函数组的偏导数: 类似地,对于多个隐函数组成的隐函数组,可以使用偏导数的链式法则求出它们的偏导数。 例如,对于隐函数组 $\begin{cases}f(x,y,z) = x^2+y^2+z^2-1=0 \\ g(x,y,z) = x+y+z-2=0\end{cases}$,可以求出它们在点 $(1,1,0)$ 处的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{2x}{2y} = -\frac{x}{y}$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial y}} = -\frac{2z}{2y} = -\frac{z}{y}$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial x}} = -\frac{2z}{2x} = -\frac{z}{x}$ $\frac{\partial y}{\partial x} = -\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial x}} = -1$ 7. 求方向导数梯度方向导数表示函数在某个方向上的变化率,可以通过对梯度向量与该方向向量进行点积得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处沿着向量 $(1,1)$ 的方向导数为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $D_{\vec{v}}f = \nabla f \cdot \vec{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 6$ 梯度表示函数在某个点上的最大变化率,可以通过对每个变量的偏导数构成的向量得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处的梯度为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ 8. 求多元函数的极值: 极值表示函数在某个点上取得最大或最小值,可以通过求解偏导数为0的方程组来得到。 例如,对于函数 $f(x,y)=x^2+y^2+2x+4y+1$,可以求出它的偏导数: $\frac{\partial f}{\partial x} = 2x+2$ $\frac{\partial f}{\partial y} = 2y+4$ 令偏导数为0,得到临界点 $(x,y)=(-1,-2)$。 然后可以通过求解二阶偏导数的行列式来确定这个点的极值类型: $D = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x\partial y} \\ \frac{\partial^2 f}{\partial y\partial x} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$ 因为 $D>0$ 且 $\frac{\partial^2 f}{\partial x^2}>0$,所以这个点是函数的最小值点。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Upupup6

写手不易请留下你的打赏鼓励谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值