https://www.cnblogs.com/skywang12345/p/3610382.html
/**
* 二叉堆(最大堆)
*
* @author skywang
* @date 2014/03/07
*/
#include <iomanip>
#include <iostream>
using namespace std;
template <class T>
class MaxHeap{
private:
T *mHeap; // 数据
int mCapacity; // 总的容量
int mSize; // 实际容量
private:
// 最大堆的向下调整算法
void filterdown(int start, int end);
// 最大堆的向上调整算法(从start开始向上直到0,调整堆)
void filterup(int start);
public:
MaxHeap();
MaxHeap(int capacity);
~MaxHeap();
// 返回data在二叉堆中的索引
int getIndex(T data);
// 删除最大堆中的data
int remove(T data);
// 将data插入到二叉堆中
int insert(T data);
// 打印二叉堆
void print();
};
/*
* 构造函数
*/
template <class T>
MaxHeap<T>::MaxHeap()
{
new (this)MaxHeap(30);
}
template <class T>
MaxHeap<T>::MaxHeap(int capacity)
{
mSize = 0;
mCapacity = capacity;
mHeap = new T[mCapacity];
}
/*
* 析构函数
*/
template <class T>
MaxHeap<T>::~MaxHeap()
{
mSize = 0;
mCapacity = 0;
delete[] mHeap;
}
/*
* 返回data在二叉堆中的索引
*
* 返回值:
* 存在 -- 返回data在数组中的索引
* 不存在 -- -1
*/
template <class T>
int MaxHeap<T>::getIndex(T data)
{
for(int i=0; i<mSize; i++)
if (data==mHeap[i])
return i;
return -1;
}
/*
* 最大堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
template <class T>
void MaxHeap<T>::filterdown(int start, int end)
{
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap[c]; // 当前(current)节点的大小
while(l <= end)
{
// "l"是左孩子,"l+1"是右孩子
if(l < end && mHeap[l] < mHeap[l+1])
l++; // 左右两孩子中选择较大者,即mHeap[l+1]
if(tmp >= mHeap[l])
break; //调整结束
else
{
mHeap[c] = mHeap[l];
c = l;
l = 2*l + 1;
}
}
mHeap[c] = tmp;
}
/*
* 删除最大堆中的data
*
* 返回值:
* 0,成功
* -1,失败
*/
template <class T>
int MaxHeap<T>::remove(T data)
{
int index;
// 如果"堆"已空,则返回-1
if(mSize == 0)
return -1;
// 获取data在数组中的索引
index = getIndex(data);
if (index==-1)
return -1;
mHeap[index] = mHeap[--mSize]; // 用最后元素填补
filterdown(index, mSize-1); // 从index位置开始自上向下调整为最大堆
return 0;
}
/*
* 最大堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
template <class T>
void MaxHeap<T>::filterup(int start)
{
int c = start; // 当前节点(current)的位置
int p = (c-1)/2; // 父(parent)结点的位置
T tmp = mHeap[c]; // 当前节点(current)的大小
while(c > 0)
{
if(mHeap[p] >= tmp)
break;
else
{
mHeap[c] = mHeap[p];
c = p;
p = (p-1)/2;
}
}
mHeap[c] = tmp;
}
/*
* 将data插入到二叉堆中
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
template <class T>
int MaxHeap<T>::insert(T data)
{
// 如果"堆"已满,则返回
if(mSize == mCapacity)
return -1;
mHeap[mSize] = data; // 将"数组"插在表尾
filterup(mSize); // 向上调整堆
mSize++; // 堆的实际容量+1
return 0;
}
/*
* 打印二叉堆
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
template <class T>
void MaxHeap<T>::print()
{
for (int i=0; i<mSize; i++)
cout << mHeap[i] << " ";
}
int main()
{
int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
int i, len=(sizeof(a)) / (sizeof(a[0])) ;
MaxHeap<int>* tree=new MaxHeap<int>();
cout << "== 依次添加: ";
for(i=0; i<len; i++)
{
cout << a[i] <<" ";
tree->insert(a[i]);
}
cout << "\n== 最 大 堆: ";
tree->print();
i=85;
tree->insert(i);
cout << "\n== 添加元素: " << i;
cout << "\n== 最 大 堆: ";
tree->print();
i=90;
tree->remove(i);
cout << "\n== 删除元素: " << i;
cout << "\n== 最 大 堆: ";
tree->print();
cout << endl;
return 0;
}
/**
* 二叉堆(最小堆)
*
* @author skywang
* @date 2014/03/07
*/
#include <iomanip>
#include <iostream>
using namespace std;
template <class T>
class MinHeap{
private:
T *mHeap; // 数据
int mCapacity; // 总的容量
int mSize; // 实际容量
private:
// 最小堆的向下调整算法
void filterdown(int start, int end);
// 最小堆的向上调整算法(从start开始向上直到0,调整堆)
void filterup(int start);
public:
MinHeap();
MinHeap(int capacity);
~MinHeap();
// 返回data在二叉堆中的索引
int getIndex(T data);
// 删除最小堆中的data
int remove(T data);
// 将data插入到二叉堆中
int insert(T data);
// 打印二叉堆
void print();
};
/*
* 构造函数
*/
template <class T>
MinHeap<T>::MinHeap()
{
new (this)MinHeap(30);
}
template <class T>
MinHeap<T>::MinHeap(int capacity)
{
mSize = 0;
mCapacity = capacity;
mHeap = new T[mCapacity];
}
/*
* 析构函数
*/
template <class T>
MinHeap<T>::~MinHeap()
{
mSize = 0;
mCapacity = 0;
delete[] mHeap;
}
/*
* 返回data在二叉堆中的索引
*
* 返回值:
* 存在 -- 返回data在数组中的索引
* 不存在 -- -1
*/
template <class T>
int MinHeap<T>::getIndex(T data)
{
for(int i=0; i<mSize; i++)
if (data==mHeap[i])
return i;
return -1;
}
/*
* 最小堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
template <class T>
void MinHeap<T>::filterdown(int start, int end)
{
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap[c]; // 当前(current)节点的大小
while(l <= end)
{
// "l"是左孩子,"l+1"是右孩子
if(l < end && mHeap[l] > mHeap[l+1])
l++; // 左右两孩子中选择较小者,即mHeap[l+1]
if(tmp <= mHeap[l])
break; //调整结束
else
{
mHeap[c] = mHeap[l];
c = l;
l = 2*l + 1;
}
}
mHeap[c] = tmp;
}
/*
* 删除最小堆中的data
*
* 返回值:
* 0,成功
* -1,失败
*/
template <class T>
int MinHeap<T>::remove(T data)
{
int index;
// 如果"堆"已空,则返回-1
if(mSize == 0)
return -1;
// 获取data在数组中的索引
index = getIndex(data);
if (index==-1)
return -1;
mHeap[index] = mHeap[--mSize]; // 用最后元素填补
filterdown(index, mSize-1); // 从index号位置开始自上向下调整为最小堆
return 0;
}
/*
* 最小堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
template <class T>
void MinHeap<T>::filterup(int start)
{
int c = start; // 当前节点(current)的位置
int p = (c-1)/2; // 父(parent)结点的位置
T tmp = mHeap[c]; // 当前节点(current)的大小
while(c > 0)
{
if(mHeap[p] <= tmp)
break;
else
{
mHeap[c] = mHeap[p];
c = p;
p = (p-1)/2;
}
}
mHeap[c] = tmp;
}
/*
* 将data插入到二叉堆中
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
template <class T>
int MinHeap<T>::insert(T data)
{
// 如果"堆"已满,则返回
if(mSize == mCapacity)
return -1;
mHeap[mSize] = data; // 将"数组"插在表尾
filterup(mSize); // 向上调整堆
mSize++; // 堆的实际容量+1
return 0;
}
/*
* 打印二叉堆
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
template <class T>
void MinHeap<T>::print()
{
for (int i=0; i<mSize; i++)
cout << mHeap[i] << " ";
}
int main()
{
int a[] = {80, 40, 30, 60, 90, 70, 10, 50, 20};
int i, len=(sizeof(a)) / (sizeof(a[0])) ;
MinHeap<int>* tree=new MinHeap<int>();
cout << "== 依次添加: ";
for(i=0; i<len; i++)
{
cout << a[i] <<" ";
tree->insert(a[i]);
}
cout << "\n== 最 小 堆: ";
tree->print();
i=15;
tree->insert(i);
cout << "\n== 添加元素: " << i;
cout << "\n== 最 小 堆: ";
tree->print();
i=10;
tree->remove(i);
cout << "\n== 删除元素: " << i;
cout << "\n== 最 小 堆: ";
tree->print();
cout << endl;
return 0;
}