二叉堆 c++

 https://www.cnblogs.com/skywang12345/p/3610382.html

/**
 * 二叉堆(最大堆)
 *
 * @author skywang
 * @date 2014/03/07
 */

#include <iomanip>
#include <iostream>
using namespace std;

template <class T>
class MaxHeap{
    private:
        T *mHeap;        // 数据
        int mCapacity;    // 总的容量
        int mSize;        // 实际容量

    private:
        // 最大堆的向下调整算法
        void filterdown(int start, int end);
        // 最大堆的向上调整算法(从start开始向上直到0,调整堆)
        void filterup(int start);
    public:
        MaxHeap();
        MaxHeap(int capacity);
        ~MaxHeap();

        // 返回data在二叉堆中的索引
        int getIndex(T data);
        // 删除最大堆中的data
        int remove(T data);
        // 将data插入到二叉堆中
        int insert(T data);
        // 打印二叉堆
        void print();
};

/* 
 * 构造函数
 */
template <class T>
MaxHeap<T>::MaxHeap()
{
    new (this)MaxHeap(30);
}

template <class T>
MaxHeap<T>::MaxHeap(int capacity)
{
    mSize = 0;
    mCapacity = capacity;
    mHeap = new T[mCapacity];
}
/* 
 * 析构函数
 */
template <class T>
MaxHeap<T>::~MaxHeap() 
{
    mSize = 0;
    mCapacity = 0;
    delete[] mHeap;
}

/* 
 * 返回data在二叉堆中的索引
 *
 * 返回值:
 *     存在 -- 返回data在数组中的索引
 *     不存在 -- -1
 */
template <class T>
int MaxHeap<T>::getIndex(T data)
{
    for(int i=0; i<mSize; i++)
        if (data==mHeap[i])
            return i;

    return -1;
}

/* 
 * 最大堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
template <class T>
void MaxHeap<T>::filterdown(int start, int end)
{
    int c = start;          // 当前(current)节点的位置
    int l = 2*c + 1;     // 左(left)孩子的位置
    T tmp = mHeap[c];    // 当前(current)节点的大小

    while(l <= end)
    {
        // "l"是左孩子,"l+1"是右孩子
        if(l < end && mHeap[l] < mHeap[l+1])
            l++;        // 左右两孩子中选择较大者,即mHeap[l+1]
        if(tmp >= mHeap[l])
            break;        //调整结束
        else
        {
            mHeap[c] = mHeap[l];
            c = l;
            l = 2*l + 1;   
        }       
    }   
    mHeap[c] = tmp;
}

/*
 * 删除最大堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
template <class T>
int MaxHeap<T>::remove(T data)
{
    int index;
    // 如果"堆"已空,则返回-1
    if(mSize == 0)
        return -1;

    // 获取data在数组中的索引
    index = getIndex(data); 
    if (index==-1)
        return -1;

    mHeap[index] = mHeap[--mSize];    // 用最后元素填补
    filterdown(index, mSize-1);        // 从index位置开始自上向下调整为最大堆

    return 0;
}

/*
 * 最大堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
template <class T>
void MaxHeap<T>::filterup(int start)
{
    int c = start;            // 当前节点(current)的位置
    int p = (c-1)/2;        // 父(parent)结点的位置 
    T tmp = mHeap[c];        // 当前节点(current)的大小

    while(c > 0)
    {
        if(mHeap[p] >= tmp)
            break;
        else
        {
            mHeap[c] = mHeap[p];
            c = p;
            p = (p-1)/2;   
        }       
    }
    mHeap[c] = tmp;
}
  
/* 
 * 将data插入到二叉堆中
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
int MaxHeap<T>::insert(T data)
{
    // 如果"堆"已满,则返回
    if(mSize == mCapacity)
        return -1;
 
    mHeap[mSize] = data;        // 将"数组"插在表尾
    filterup(mSize);    // 向上调整堆
    mSize++;                    // 堆的实际容量+1

    return 0;
}
  
/* 
 * 打印二叉堆
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
void MaxHeap<T>::print()
{
    for (int i=0; i<mSize; i++)
        cout << mHeap[i] << " ";
}
    
int main()
{
    int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
    int i, len=(sizeof(a)) / (sizeof(a[0])) ;
    MaxHeap<int>* tree=new MaxHeap<int>();

    cout << "== 依次添加: ";
    for(i=0; i<len; i++)
    {
        cout << a[i] <<" ";
        tree->insert(a[i]);
    }

    cout << "\n== 最 大 堆: ";
    tree->print();

    i=85;
    tree->insert(i);
    cout << "\n== 添加元素: " << i;
    cout << "\n== 最 大 堆: ";
    tree->print();

    i=90;
    tree->remove(i);
    cout << "\n== 删除元素: " << i;
    cout << "\n== 最 大 堆: ";
    tree->print();
    cout << endl; 

    return 0;
}
/**
 * 二叉堆(最小堆)
 *
 * @author skywang
 * @date 2014/03/07
 */

#include <iomanip>
#include <iostream>
using namespace std;

template <class T>
class MinHeap{
    private:
        T *mHeap;        // 数据
        int mCapacity;    // 总的容量
        int mSize;        // 实际容量

    private:
        // 最小堆的向下调整算法
        void filterdown(int start, int end);
        // 最小堆的向上调整算法(从start开始向上直到0,调整堆)
        void filterup(int start);
    public:
        MinHeap();
        MinHeap(int capacity);
        ~MinHeap();

        // 返回data在二叉堆中的索引
        int getIndex(T data);
        // 删除最小堆中的data
        int remove(T data);
        // 将data插入到二叉堆中
        int insert(T data);
        // 打印二叉堆
        void print();
};

/* 
 * 构造函数
 */
template <class T>
MinHeap<T>::MinHeap()
{
    new (this)MinHeap(30);
}

template <class T>
MinHeap<T>::MinHeap(int capacity)
{
    mSize = 0;
    mCapacity = capacity;
    mHeap = new T[mCapacity];
}
/* 
 * 析构函数
 */
template <class T>
MinHeap<T>::~MinHeap() 
{
    mSize = 0;
    mCapacity = 0;
    delete[] mHeap;
}

/* 
 * 返回data在二叉堆中的索引
 *
 * 返回值:
 *     存在 -- 返回data在数组中的索引
 *     不存在 -- -1
 */
template <class T>
int MinHeap<T>::getIndex(T data)
{
    for(int i=0; i<mSize; i++)
        if (data==mHeap[i])
            return i;

    return -1;
}

/* 
 * 最小堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
template <class T>
void MinHeap<T>::filterdown(int start, int end)
{
    int c = start;          // 当前(current)节点的位置
    int l = 2*c + 1;     // 左(left)孩子的位置
    T tmp = mHeap[c];    // 当前(current)节点的大小

    while(l <= end)
    {
        // "l"是左孩子,"l+1"是右孩子
        if(l < end && mHeap[l] > mHeap[l+1])
            l++;        // 左右两孩子中选择较小者,即mHeap[l+1]
        if(tmp <= mHeap[l])
            break;        //调整结束
        else
        {
            mHeap[c] = mHeap[l];
            c = l;
            l = 2*l + 1;   
        }       
    }   
    mHeap[c] = tmp;
}
 
/*
 * 删除最小堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
template <class T>
int MinHeap<T>::remove(T data)
{
    int index;
    // 如果"堆"已空,则返回-1
    if(mSize == 0)
        return -1;

    // 获取data在数组中的索引
    index = getIndex(data); 
    if (index==-1)
        return -1;

    mHeap[index] = mHeap[--mSize];        // 用最后元素填补
    filterdown(index, mSize-1);    // 从index号位置开始自上向下调整为最小堆

    return 0;
}

/*
 * 最小堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
template <class T>
void MinHeap<T>::filterup(int start)
{
    int c = start;            // 当前节点(current)的位置
    int p = (c-1)/2;        // 父(parent)结点的位置 
    T tmp = mHeap[c];        // 当前节点(current)的大小

    while(c > 0)
    {
        if(mHeap[p] <= tmp)
            break;
        else
        {
            mHeap[c] = mHeap[p];
            c = p;
            p = (p-1)/2;   
        }       
    }
    mHeap[c] = tmp;
}
  
/* 
 * 将data插入到二叉堆中
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
int MinHeap<T>::insert(T data)
{
    // 如果"堆"已满,则返回
    if(mSize == mCapacity)
        return -1;
 
    mHeap[mSize] = data;        // 将"数组"插在表尾
    filterup(mSize);            // 向上调整堆
    mSize++;                    // 堆的实际容量+1

    return 0;
}
  
/* 
 * 打印二叉堆
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
void MinHeap<T>::print()
{
    for (int i=0; i<mSize; i++)
        cout << mHeap[i] << " ";
}

int main()
{
    int a[] = {80, 40, 30, 60, 90, 70, 10, 50, 20};
    int i, len=(sizeof(a)) / (sizeof(a[0])) ;
    MinHeap<int>* tree=new MinHeap<int>();

    cout << "== 依次添加: ";
    for(i=0; i<len; i++)
    {
        cout << a[i] <<" ";
        tree->insert(a[i]);
    }

    cout << "\n== 最 小 堆: ";
    tree->print();

    i=15;
    tree->insert(i);
    cout << "\n== 添加元素: " << i;
    cout << "\n== 最 小 堆: ";
    tree->print();

    i=10;
    tree->remove(i);
    cout << "\n== 删除元素: " << i;
    cout << "\n== 最 小 堆: ";
    tree->print();
    cout << endl; 

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值