深度学习为什么会出现validation accuracy大于train accuracy的现象?

本文探讨了深度学习中出现验证精度(validation accuracy)高于训练精度(train accuracy)的现象,主要从样本数量差异、数据增强、正则化技术应用等方面解析其原因,揭示了模型泛化能力与过拟合之间的微妙平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知乎:深度学习为什么会出现validation accuracy大于train accuracy的现象?

概括他们的答案:

  1. validation的样本数量一般远小于training的
  2. val的时候是用已经训练了一个epoch的model进行测试的(经过大量的训练学习到东西了)
  3. data augmentation把训练集变得丰富,制造数据的多样性和学习的困难来让network更robust(比如旋转,随机crop,scale),但是val和test的时候一般是不对数据进行data augmentation的
  4. 各种正则化,dropout在训练集上使用,却不会在验证集上使用,导致训练集的 loss 偏大
### 验证集的作用 在深度学习中,验证集用于评估模型在未见过的数据上的表现,从而调整超参数并防止过拟合。这有助于找到最佳的模型配置,在测试阶段之前提供反馈,确保模型具有良好的泛化能力[^1]。 ### 使用方法 通常情况下,数据会被分为三部分:训练集、验证集和测试集。其中: - 训练集用来更新权重; - **验证集**则是在每次迭代结束时评估当前模型性能,并据此决定是否保存该版本的模型或停止训练; - 测试集仅当最终模型确定后才被使用一次,以估计其真实世界的表现。 对于如何具体实现这一点,可以考虑如下代码片段作为示范,这里采用的是 PyTorch 框架下的简单做法: ```python import torch from sklearn.model_selection import train_test_split # 假设 data 和 labels 是已经准备好的输入特征和标签 train_data, val_data, train_labels, val_labels = train_test_split( data, labels, test_size=0.2) def validate(model, criterion, device): model.eval() running_loss = 0.0 correct_predictions = 0 with torch.no_grad(): for inputs, targets in zip(val_data, val_labels): outputs = model(inputs.to(device)) loss = criterion(outputs, targets.to(device)) _, preds = torch.max(outputs, dim=1) correct_predictions += (preds == targets).sum().item() running_loss += loss.item() * inputs.size(0) avg_loss = running_loss / len(val_data) accuracy = correct_predictions / len(val_data) return avg_loss, accuracy ``` 此段代码展示了如何定义一个 `validate` 函数来计算给定模型在验证集上的损失值和准确率。注意这里的 `device` 参数是为了兼容 GPU 加速而设置的;如果不需要,则可以直接忽略它或将所有张量移动到 CPU 上处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值