unity 3d 数学基础

本文介绍了Unity3D中的向量和矩阵基础知识,包括向量的点乘和叉乘,矩阵的乘法、逆矩阵和正交矩阵,以及在3D变换中的应用,如缩放、旋转和平移。重点讨论了复合变换和坐标空间转换的重要性。
摘要由CSDN通过智能技术生成
  • 向量的 点乘

    • a·b=|a|*|b|*cosα
    • a点乘b 可以看做,b向量投影到a向量的上投影值 在乘以a的模长 ,如果a为单位向量,通过点乘值直接获取投影值
    • a·b 如果单看正负,可得,如果α>90 值为负数,a<90值为正数 0 为90
    • a·b=b·a a·(b+c)=a·b+a·c
    • (a x,a y)·(b x,b y)=a x*b x+a y*b y
  • 向量的 叉积

    • a×b=(a x,a y,a z)×(b x,b y,b z)=(a yb z-a zb y,a zb x-a xb z,a xb y-a yb x)
    • 叉积的结果得到一个⊥a和b的新向量
    • 证明
      Ax+By+Cz=0 => -x= (By+Cz)/A =>
      ax+by+cz=0 => -x= (by+cz)/a => (aB-Ab)y=(Ac-aC)z
    • 叉积只满足反交换率 a×b=-(b×a)
    • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值