-
向量的 点乘
- a·b=|a|*|b|*cosα
- a点乘b 可以看做,b向量投影到a向量的上投影值 在乘以a的模长 ,如果a为单位向量,通过点乘值直接获取投影值
- a·b 如果单看正负,可得,如果α>90 值为负数,a<90值为正数 0 为90
- a·b=b·a a·(b+c)=a·b+a·c
- (a x,a y)·(b x,b y)=a x*b x+a y*b y
-
向量的 叉积
- a×b=(a x,a y,a z)×(b x,b y,b z)=(a yb z-a zb y,a zb x-a xb z,a xb y-a yb x)
- 叉积的结果得到一个⊥a和b的新向量
- 证明
Ax+By+Cz=0 => -x= (By+Cz)/A =>
ax+by+cz=0 => -x= (by+cz)/a => (aB-Ab)y=(Ac-aC)z - 叉积只满足反交换率 a×b=-(b×a) <
unity 3d 数学基础
最新推荐文章于 2024-08-13 03:28:48 发布
本文介绍了Unity3D中的向量和矩阵基础知识,包括向量的点乘和叉乘,矩阵的乘法、逆矩阵和正交矩阵,以及在3D变换中的应用,如缩放、旋转和平移。重点讨论了复合变换和坐标空间转换的重要性。
摘要由CSDN通过智能技术生成